New method developments in pollen DNA barcoding for forensic applications

Karen Leanne Bell, Emory University
Homeland Security Symposium Series, University of Texas El Paso, June 2016
Overview

- Background and aims
- Testing the DNA metabarcoding method
- Quantification
- Whole genome shotgun approach
- Removal of non-pollen material
- Ongoing method development
Pollen species identification

• Applications:
 • Forensics
 • Allergen monitoring
 • Pollination ecology
 • Determining plant community composition

• Typical sample:
 • Mixture of pollen species
 • May be low quantity
Pollen DNA metabarcoding

- Advantages over microscopic examination:
 - Greater taxonomic resolution

Image: C. Chu
Pollen DNA metabarcoding

• Advantages over microscopic examination:
 • Some species lack features on pollen
 • Few people trained in palynology
 • Many more could be trained in pollen DNA metabarcoding

“I am swamped with the amount of samples that come in.”
Pollen DNA metabarcoding

- Advantages over microscopic examination:
 - Some species lack features on pollen
 - Few people trained in palynology
 - Faster with large numbers of samples
Pollen DNA metabarcoding

• Advantages over microscopic examination:
 • Some species lack features on pollen
 • Few people trained in palynology
 • Faster with large numbers of samples

• Disadvantages:
 • Not quantitative
 • Species missing from databases
 • No standard bioinformatics pipeline
Overview

• Background and aims
• **Testing the DNA metabarcoding method**
• Quantification
• Whole genome shotgun approach
• Removal of non-pollen material
• Ongoing method development
Pollen DNA metabarcoding

Testing the method with known pollen mixtures
Pollen DNA metabarcoding: Concepts and definitions

• DNA barcoding:
 • The identification of species based on DNA sequence of a standard gene region

• DNA metabarcoding:
 • Simultaneous identification of all species in a mixture using high-throughput sequencing of a standard gene region
Mixed-species pollen samples from objects of interest

Pollen exine lysis DNA isolation

Sample A: Species 1, Species 2
Sample B: Species 3, Species 4
Sample C ...

Apply unique index to each sample

DNA sequence data

Pool and sequence

Index A, Index B, Index C

Amplification of barcoding marker

Sample A: DNA barcode 1, DNA barcode 2
Sample B: DNA barcode 1, DNA barcode 3, DNA barcode 4
Sample C ...

Sort and remove index sequences

Search DNA sequence database

Sample A: Species 1, Species 2
Sample B: Species 1, Species 3, Species 4
Sample C ...

Testing the DNA metabarcoding method

• Why test the method?
 • Don’t know how accurate the method is
 • Don’t know how many samples can be multiplexed
 • Don’t know if it is quantitative
Testing the basic pollen DNA metabarcoding method

• How many species can be detected within a sample?
• To what extent is this affected by taxonomic relatedness?
• How rare can a species be in a sample before it becomes undetectable?
Testing the method with “knowns”

- Mixtures of varying complexity:
 - Number of species
 - Relatedness
 - Proportion of rarest species
- 450bp ITS2
- 500bp *rbcL*
- Illumina MiSeq:
 - Dual-index 96 samples/flow cell
 - Species identification with customized bioinformatics pipeline

ITS2 results: Increasing number of species

<table>
<thead>
<tr>
<th>Level</th>
<th>Species Identified</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 species detected</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3 species identified to species, Zea mays undetected, 2 species identified to genus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Broussonetia papyrifera correctly identified, Zea mays undetected, Artemisia tridentata identified to genus</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4 species identified to species, Zea mays undetected, 2 species identified to genus</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5 species identified to species, Zea mays undetected, 2 species identified to genus</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6 species identified to species, Zea mays undetected, 2 species identified to genus</td>
<td></td>
</tr>
</tbody>
</table>
ITS2 results: Effect of taxonomic relatedness

- **Same genus**
 - 2 species detected

- **Same family**
 - 2 species detected

- **Same APGIII lineage**
 - 2 species detected

- **Different APGIII lineage**
 - 2 species detected

- **Zea mays** undetected

- **Monocot vs dicot**
 - 2 species detected
ITS2 results: Increasing rarity

Different families

- 2 species detected

Same family

- 2 species detected
Testing the DNA metabarcoding method: conclusions

- Success varied across species
- Success dependent on rarity
- Not affected by:
 - Species richness
 - Taxonomic relatedness
- Not quantitative
DNA metabarcoding: ongoing research

• Bioinformatics pipeline for mixed-amplicon DNA metabarcoding including *rbcL*
• Effect of sequencing depth
• Standard methodology
Overview

• Background and aims
• Testing the DNA metabarcoding method
• **Quantification**
• Whole genome shotgun approach
• Removal of non-pollen material
• Ongoing method development
Quantitative pollen DNA metabarcoding: goals

Species A 58%
Species B 23%
Species C 10%
Species D 9%

http://remf.dartmouth.edu/imagesindex.html
Quantitative pollen DNA metabarcoding: benefits

• Benefits for various applications
• Pollination biology:
 • Proportion of time on a particular plant species impacts pollination effectiveness
• Forensics:
 • Fine-scale geographic/temporal signature
 • May not differ qualitatively
Quantification & biases

• Sources of bias:
 • Pollen preservation bias
 • DNA isolation bias
 • Amplification bias
 • Copy number bias

• Phylogenetic trends

• Correction
Quantification: testing for biases

- Pollen preservation bias:
 - Quantify DNA obtained from stored specimens

- DNA isolation bias:
 - Quantify DNA obtained from fresh specimens

- Amplification bias:
 - Context dependent
 - Testing on mixtures of known species composition

- Copy number bias:
 - *rbcl* and ITS2
 - qPCR methods
Quantification: copy number bias

• qPCR:
 • Follows PCR amplification in real time using fluorescent dye
 • Quantifies number of copies of gene of interest

• Determine copy number of chloroplast, ribosome and single-copy gene

• Look for phylogenetic patterns in copy number
Copy number bias: progress

- Primers developed for chloroplast for all major plant lineages
- Primers developed for ribosomal DNA for all major plant lineages
- Primers developed for single-copy nuclear gene for:
 - *Pinus taeda* – gymnosperm
 - *Magnolia grandiflora* – basal angiosperm
 - *Hibiscus syriacus* – eudicot
Copy number bias: qPCR analysis

• Step 1: For 3 species with single-copy nuclear DNA primers:
 • Use qPCR to find copy number of chloroplast, ribosome, and single-copy nuclear gene
 • Calculate copy number per pollen grain for chloroplast & ribosome using:
 • qPCR copy number of 3 genes
 • Ploidy
 • Number of cells per pollen grain
Copy number bias: qPCR analysis

• Step 1: For 3 species with single-copy nuclear DNA primers:
 • Use qPCR to find copy number of chloroplast, ribosome, and single-copy nuclear gene

• Step 2: For all other species:
 • Measure DNA concentration
 • Use qPCR to find copy number of chloroplast & ribosome
 • Calculate copy number per pollen grain for chloroplast & ribosome using:
 • qPCR copy number of 3 genes
 • DNA concentration
 • Genome size
 • Number of cells per pollen grain
Copy number bias: qPCR analysis

• Step 1: For 3 species with single-copy nuclear DNA primers:
 • Use qPCR to find copy number of chloroplast, ribosome, and single-copy nuclear gene

• Step 2: For all other species:
 • Measure DNA concentration
 • Use qPCR to find copy number of chloroplast & ribosome

• For 3 species with single-copy nuclear DNA primers compare copy number calculation from both methods for accuracy
Copy number bias: sampling & phylogenetic analysis

100 species for analysis:
- 25 orders, 3 species each in different families
- 5 orders, 2 species-pairs in same genus, one species from another family

Test for phylogenetic patterns in copy number
Make generalizations for lineage, order, or family
Quantification: DNA isolation bias

DNA yield (ng/μL) vs. Haploid Genome Size (pg)

- DNA yield increases with increasing Haploid Genome Size.
- The relationship is not linear, suggesting a bias in the DNA isolation process.
- The data points indicate a higher yield at lower genome sizes compared to higher genome sizes.
Quantification: other biases

• Pollen preservation bias:
 • Not examined
 • Could be examined using stored samples

• Amplification bias:
 • Could be examined with results of known mixtures
 • Results will only apply under same PCR conditions
 • Varies with other species in mixture
Quantification: ongoing research

• Test recently designed qPCR primers
• Quantify copy number of 100 species of pollen
• Determine phylogenetic trends for all biases
• Apply correction factors to convert from proportion of DNA sequencing reads to proportion of pollen grains
• Include correction factors in bioinformatics pipelines
Overview

• Background and aims
• Testing the DNA metabarcoding method
• Quantification
• **Whole genome shotgun approach**
• Removal of non-pollen material
• Ongoing method development
Whole Genome Shotgun (WGS) pollen DNA metabarcoding
WGS pollen DNA metabarcoding

• Advantages over PCR-based approaches:
 • No amplification bias
 • No copy number bias
 • Finds variation between species identical in “barcode” genes

• Current challenges:
 • Genome size bias
 • Few species with genome data for reference library
Testing the WGS method

• How many species can be detected within a sample?
• To what extent is this affected by taxonomic relatedness?
• How rare can a species be in a sample before it becomes undetectable?
• How does it compare to mixed-amplicon sequencing?
Testing the method with “knowns”

- Subset of known mixtures used for mixed-amplicon sequencing
- Simulated data for same mixtures
- Illumina MiSeq:
 - 21 indexed samples/flow cell
 - 24-30M paired reads of 150bp
 - Species identification with customized bioinformatics pipeline

Bell, K.L., Macpherson, M., Burgess, K.S., Read, T.D., and Brosi, B. (in prep.)
Assessing the potential for whole genome shotgun methods in mixed-species pollen identification using artificial mixtures
WGS results: Simulated data

• Same mixtures as laboratory samples, with exception of those containing *Carya illinoinsensis*

• Mixture complexities:
 • Up to 8 species
 • Pairs of varying relatedness
 • Down to 10% of pollen grains, 1% of DNA content
WGS results: Known pollen mixtures

- Results better than simulated data
- Fewer false positives
- All species identified except *Carya illinoinensis*
WGS results: Overall success

• All species could be identified given presence in reference database

• Advantages over mixed-amplicon sequencing:
 • Species level identifications of species with identical ITS2 sequences
 • *Artemisia tridentata*
 • *Populus tremuloides*
 • Detection of species that amplified poorly with ITS2
 • *Zea mays*

• Disadvantages over mixed-amplicon sequencing:
 • Species absent from database:
 • *Carya illinoinensis*
Testing the WGS DNA metabarcoding method: conclusions

• Demonstrated proof of concept

• Success varied only with database presence

• Not affected by:
 • Species richness
 • Taxonomic relatedness
 • Rarity

• Probably not quantitative
WGS: ongoing research

• Is it quantitative?
• Quantitative comparison to standard DNA metabarcoding
• Effect of sequencing depth
• Standard methodology
Overview

- Background and aims
- Testing the DNA metabarcoding method
- Quantification
- Whole genome shotgun approach
- Removal of non-pollen material
- **Ongoing method development**
Ongoing method development

• Improving bioinformatics pipeline for mixed-amplicon DNA metabarcoding:
 • Including multiple gene regions
 • Correcting for biases

• Improving methods to remove non-pollen plant material

• Developing standard methods for DNA metabarcoding and Whole Genome Shotgun methods
Possible future directions

• Developing a geographical database to assist with determining geographic origin of pollen samples
• Trialing standard methods on known mixtures that resemble forensic samples
• Developing standard methods for specific types of forensic and other analyses
Acknowledgements

Funding and Institutional Support:
- US Army Research Office (grants W911NF-13-1-0247 & W911NF-13-1-0100 to Brosi, Read, & Burgess)
- Emory University

Individuals:
- Berry Brosi (Emory)
- Kevin Burgess (Columbus State)
- Tim Read (Emory)
- Cindy Chu (Emory)
- Emily Dobbs (Emory)
- Julie Fowler (Emory)
- Virginia Loeffler (Emory)

Donated plant material:
- Atlanta Botanical Garden
- Missouri Botanical Garden
- New York Botanical Garden
- Montgomery Botanical Center
- Royal Botanic Gardens Victoria
Karen Leanne Bell
Emory University
karen.bell@emory.edu