COURSE DESCRIPTION

<table>
<thead>
<tr>
<th>Dept., Number</th>
<th>Course Title</th>
<th>Data Structures and Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS2302</td>
<td>Data Structures and Algorithms</td>
<td></td>
</tr>
</tbody>
</table>

Course Title: Data Structures and Algorithms

Approval Date: April 2022

Course Coordinator: M. Ceberio

CATALOG DESCRIPTION

Data Structures: Abstract data types, representation of data using sets, lists, trees, and graphs. Storage allocation and collection techniques. [TCCN COSC 2336]

TEXTBOOK

Revel for Introduction to Python Programming and Data Structures
By Y. Daniel Liang

COURSE OUTCOMES

Level 3: Synthesis and evaluation:
Level 3 outcomes are those in which the student can apply the material in new situations. This is the highest level of mastery. On successful completion of this course students will be able to:

1. Given a problem, judge which data structures are required to solve it efficiently and justify the selection.
2. Solve problems using arrays and lists.
3. Given a non-recursive algorithm, examine its loop structure, assess its asymptotic running time, and express it using big-O notation.
4. Given a recursive algorithm, examine its structure, formulate, and solve a recurrence equation defining its running time, and express it using big-O notation.
5. Design and implement solutions to computational problems based on iteration and recursion.
6. Trace the behavior of functions and algorithms involving iteration and recursion.

Level 2: Application and analysis:
Level 2 outcomes are those in which the student can apply the material in familiar situations, e.g., can work a problem of familiar structure with minor changes in the details. Upon successful completion of this course, students will be able to:

1. Describe, implement, and use the following data structures:
 a) Heaps
 b) Balanced search trees
 c) Graphs
2. Solve problems using hashing, specifically using language-specific data structures (e.g., sets and dictionaries in Python)
3. Describe, implement, and apply the following graph algorithms:
 a) Breadth-first search
 b) Depth-first search
 c) Topological sorting
d) Minimum spanning trees (Kruskal’s and Prim’s)
e) Single-source shortest paths (Dijkstra’s algorithm)

4. Assess the running times and space requirements of algorithms in relation to the size of the problem.

Level 1: Knowledge and comprehension:

Level 1 outcomes are those in which the student has been exposed to the terms and concepts at a basic level and can supply basic definitions. On successful completion of this course, students will be able to:

1. Identify and explain the following algorithm design techniques:
 a) Greedy algorithms
 b) Divide and conquer
 c) Dynamic programming
 d) Backtracking
 e) Randomized algorithms
ABET STUDENT OUTCOMES MAPPING

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Student Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4, 3.3, 3.4</td>
<td>1</td>
</tr>
<tr>
<td>3.1, 3.2, 3.5</td>
<td>2 (ABET 1)</td>
</tr>
<tr>
<td>2.1, 2.2, 2.3</td>
<td>3 (ABET 2)</td>
</tr>
<tr>
<td></td>
<td>4 (ABET 5)</td>
</tr>
<tr>
<td></td>
<td>5 (ABET 4)</td>
</tr>
<tr>
<td></td>
<td>6 (ABET 3)</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>1.1, 2.1, 2.2, 2.3</td>
<td>9</td>
</tr>
<tr>
<td>3.6</td>
<td>10 (ABET 6)</td>
</tr>
</tbody>
</table>

PREREQUISITES BY TOPIC

(CS 2401 w/C or better) AND (MATH 2300 w/C or better) OR (CS 2202 w/C or better) AND (CS 2101 w/C or better)