1. **Course number and name:** MECH 2342: Electro-Mechanical Systems

2. **Credits and contact hours:** 3 SCH

3. **Instructor’s or course coordinator’s name:** M. Abed, A. Khan

4. **Text book, title, author, and year:**

5. **Specific course information**

 a. **brief description of the content of the course (catalog description):** Fall 2012 UTEP catalog description: Basic, automated, and advanced manufacturing concepts. Shop demonstration and practices.
 b. **prerequisites or co-requisites:** MATH 1312: Calculus II
 c. **indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program:** Required.

6. **Specific goals for the course**

 a. **specific outcomes of instruction:**

 At the end of this class the typical students should be able to:

 - Analyze simple DC circuits using ohm’s law, Kirchhoff’s current and voltage laws.
 - Analyze DC circuits containing independent sources using node-voltage & mesh-current methods.
 - Understand difference between ideal sources and practical sources.
 - Understand Thevenin and Norton equivalent circuits, superposition, and source transformation techniques.
• Analyze steady state response of basic AC circuits.
• Understand logic circuits.
• Understand fundamental properties of three-phase power.
• Gain basic insight into transformer fundamentals, electric motors and generators.
• Understand the principles of sensing, actuation, and controls.

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course:

<table>
<thead>
<tr>
<th>Student Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

7. Brief list of topics to be covered:
 • Definition of voltage, current, and Ohm’s law and resistance, and Kirchhoff’s law.
 • Resistive circuits
 • Inductance and capacitance
 • First order circuits
 • Steady-state analysis
 • Introduction to logic circuits
 • Instrumentation
 • Semiconductors (diodes, op amps)
 • Magnetic circuits
 • DC Machines
 • AC Machines
 • Introduction to mechatronics: sensors and actuators