Project Title: Planning Monitoring System

Team members:
1. Ana Canizales
2. Luis Ochoa
3. Natalie Valenzuela
4. Omar Candelaria
5. Ajay Naidu
6. Andrea Noriega

Semester, year: Fall 2017

Type of project:
- Individual project at students work ()
- Team project assigned by instructor (x)
- Project proposed by team ()

List members in the picture from left to right
Natalie Valenzuela, Ana Canizales, Luis Ochoa, Ajay Naidu, Omar Candelaria, Andrea Noriega
INTRODUCTION

The System Engineering Project Practicum provides the opportunity to apply System Engineering concepts in developing a real system and create documents that formally describe the system. Students review documents and validate them with clients and customers through formal presentations. Teams are self-managed and assign roles to control planning, quality, requirements, design, and implementation.

System Overview
The main purpose of the project is to create a planning and monitoring system that will enable teams to become self-managed teams. By using this approach the teams are expected to work in a more efficient and reliable manner. The system will aid the teams to identify obstacles, internal and external issues, such as; meeting deadlines, workload distribution, risks and problems that can affect the project. At the same time it will enhance the communication between management and the team by providing a better data to understand the status of the project. The system will also provide a project status with reliable data to the costumer. The current problem is that there is not a very well established framework created for the teams so they can be able to provide reliable data to create reports. Current system is not robust enough to be able to achieve a team to be. This is an issue, because it is very easy to get lost working as a team and head to different directions. This project will address the problem by facilitating the process of monitoring and reviewing the team's performance. Data will be logged by team members and it can be reviewed by Team Leader and Project Manager for reviewing team’s effort during a certain period of time or project.

System Description

The Planning Monitoring System will allow users to monitor the progress and performance of team projects by automating an existing MS Excel file in which effort time and task activities are recorded. The system will let users track performance of team or individual team members by automatically showing graphical representations of recorded data and letting the user analyze it.
External entities with system components:

Use case diagrams, list actors and services:

List of Actors:

1. PMO
2. Team Leader
3. Team Member

Main services:
1. Secure Login/Log out
2. Create a team
3. Create a new Project
4. Create a new user/account
5. Create a list of tasks
6. Update a task
7. Create a problem
8. Update a problem
9. Create a Risk
10. Update a Risk
11. Write Earn value Analysis
12. Write Plan vs Actual time graph analysis
13. Create Macro Plan
14. Update Macro plan
5. View Micro Plan
6. Write control chart for micro plan analysis (for manager and team)
7. Write control chart for macro plan analysis (for customer)
8. Create a report
9. Update Edit the report

[insert activity diagram of the two main services]

Adding a Micro Task

![Activity Diagram]

- Click on “Micro Plan”
- Display Micro plan dashboard
- Click on “create tasks”
- Enter information in fields (task #, task type, task description, etc.)
- Display fields to type micro task (task #, task type, task description, plan work time, etc.)
- Creates Micro Plan
Add Macro Activity

<table>
<thead>
<tr>
<th>ACTIVITY DIAGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER</td>
</tr>
</tbody>
</table>

1. **Click on “Macro Plan”**
 - Display Macro Plan Dashboard
 - **Display fields to type micro task (task #, task type, task description, plan work time, etc.)**
 - **Create Macro Activity**
 - **Click on “create activities”**

2. **Fill out macro activities**
 - Activity, planned start date, actual start date, planned end date, actual end date, planned hours, actual hours, percent complete.
Fig1: Sequence diagram – Add Activity to Macro table
Fig 2: Sequence diagram – Add task to Micro table
Fig3: Sequence diagram - Add a problem to the problem list

Fig4: Sequence diagram - Add a risk description to the risk list
Fig5: Sequence diagram - update a risk description
Fig 6: Sequence Diagram - update a task in Micro table

Fig 7: Sequence Diagram - Create customer Macro plan
PROJECT OUTCOMES

Provide a brief description for the impact of this system in the organization.
This system will make it easier to the organization to manage teams, also, teams can be self-managed by using the system. Reviewing performance and tracking progress of tasks, activities, risks, problems, will have a positive impact in the way the organization tracks a team’s effort.

Provide your impression on how the reviews impact the quality of the system under development

<table>
<thead>
<tr>
<th>Review Phase</th>
<th>Initial Phase</th>
<th>Detailed Design</th>
<th>System Design</th>
<th>Preliminary System</th>
<th>Design System</th>
<th>System Acceptance</th>
<th>System Review</th>
<th>Total Time/Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Test</td>
<td>5.0</td>
<td>4.0</td>
<td>3.5</td>
<td>4.5</td>
<td>3.8</td>
<td>4.0</td>
<td>4.5</td>
<td>20.0</td>
</tr>
<tr>
<td>Detailed Design</td>
<td>4.0</td>
<td>3.5</td>
<td>3.2</td>
<td>4.0</td>
<td>3.5</td>
<td>4.0</td>
<td>4.0</td>
<td>16.0</td>
</tr>
<tr>
<td>System Design</td>
<td>4.5</td>
<td>4.0</td>
<td>3.7</td>
<td>4.3</td>
<td>4.0</td>
<td>4.0</td>
<td>4.5</td>
<td>21.0</td>
</tr>
<tr>
<td>Preliminary System</td>
<td>3.8</td>
<td>3.5</td>
<td>3.2</td>
<td>4.0</td>
<td>3.5</td>
<td>4.0</td>
<td>3.8</td>
<td>16.0</td>
</tr>
<tr>
<td>Design System</td>
<td>4.0</td>
<td>4.0</td>
<td>3.7</td>
<td>4.3</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>20.0</td>
</tr>
<tr>
<td>System Acceptance</td>
<td>4.0</td>
<td>4.0</td>
<td>3.7</td>
<td>4.3</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

[What soft skills have you (or need to) developed to work on teams]

Definitely, communication skills are needed to work on teams, System requirements need to be Specific, Measurable, Attainable, Realistic, Timely. Communicating the wrong requirements can lead to misunderstandings at earlier phases of the project.

MASTERS OF SCIENCE IN SYSTEM ENGINEERING PROGRAM ASSESSMENT

[Provide a brief assessment of your master’s program. You may consider the following guiding questions:

- Soft skills that I/we have developed in the program
 We have learned to be a self-managed team with the help of the documentation we used on a weekly basis, it helped the team to be tracking the effort put into a certain task and who was responsible to complete it.

- Methodologies and techniques that I/we have learned in the program
 Customer Validation is really needed to make sure we are building the right system, if we only use verification in a system, we can be building the system that meets specification but not really the customer requirements or needs.

- Opportunities that I/we have during the program
 There are company talks given for IMSE students where sometimes they are hiring, we would recommend to go those talks and apply. Even if it is for the interview experience or learning about how other companies work. We had the opportunity to go to some company talks and even interview with different companies such as Lockheed Martin and learning about NavAir which was one of our favorite talks. Also, there are a lot of opportunities for students who want to study abroad even for one semester or during summer courses.

- Skills/techniques that I/we will use in our professional life
 Understanding system requirements, Validation and verification, Systems Engineering Processes, were some of the concepts we will use and have used in our professional lives. We have developed presentation skills throughout the master’s program and have worked on simple system projects and even hands on projects like building a quad copter according to certain specifications in a Design for Manufacturability class.

- Any other comment that you want to share with current and prospect students]
Understanding systems can be very complex, however, it everything comes into place once the basic system concepts are understood. We think the master’s program gives us the preparation to understand complex systems and apply what we have learned in real life situations.