Final presentation at Becton Dickinson

Group members for Assembly

- Leonardo Foligne
- Ahmad Alenezi

Group Members for Warehouse

- Mohammad Alenezi
- Duaij redha

Group member for Filling and Formulating

Omar Alwasmi

Final Update of Project

- Documentation of material handlers' performances and wastes at different shifts.
- Time Study Research
- Efficient Material Handling Alternatives
- Metrology
- Standardization of work

Layout division

Formulating & Filling Warehouse

Assembly

Offices

Spaghetti diagram

Machines

Yellow – 26#6

Green - K9

Blue - 26#4

Brown – 26#5

Black – 10.5 #2

Grey– 10.5 Manual

Light Blue- 3 ml

Pink – 1.5 ml

Purple- Frappe

Turquoise- Packing

Time keeping for 1 machine at assembly 10.5 #2

	Task	Time taken
	Goes to warehouse	54 sec
	Organizes the tunnel	6 sec
	Back from warehouse to the tunnel	128 sec
	Move from tunnel to 10.5 #1	78 sec
	Unloads rack	38 sec
	Goes to warehouse	64 sec
	Waits to go to the warehouse	53 sec
	Takes load and come back	168 sec
es Observed in Red	Waits tunnel to open	30 sec
	Goes back from WH to 10.5 #1	75 sec
	Unloads it	42 sec
	Organized parts in rack	25 sec
	Unloads from 1 rack to another	60 sec
	Change label	30 sec
	Organized station	50 sec
	Goes to warehouse	46 sec
	Comes back empty	50 sec
	Goes to 26#4 with another MH	85 sec
	Organizes racks	17 sec
	Changes label	8 sec
	Goes to WH empty	75 sec

Warehouse

Ivan Villareal	Fred	Vicente
 26 mL #6 Pack: 1:28:36 to get the cart 0:13:51 to open the job 0:18:22 to collect the boxes 0:3:38 to move it to the location 0:2:28 to put it on the system 	 # 1 mL: 0:6:35 to get the cart 0:19:12 to open the job 0:5:46 to collect boxes 0:5:10 to move it to the location 0:1:59 to put it on the system 	 #Ampules: 0:8:17 to get the cart 0:12:30 to open the job 0:4:19 to collect the boxes 0:3:45 to move it to the location

Formulating and filling

Tank new and wait for call	0:58:16
Cleaning	0:5:36
Take the cart to warehouse and it wasn't received	1:5:93
The warehouse fills the cart	2:28:68
He takes the carts	1:00:36
Move struck#9	1:2:93
Cleaning of the cart	2:58:62
Moving cart out of warehouse	8:31:83
Take cart from warehouse	00:53:43
Move fall of pallet empty pallet	1:28:83
Take paper to racks	0:52:29
Move and cover strunk	5:11:19
Get the new rack room 7	1:39:01
Do inventory	8:13:72
Bath#2 need an empty rack	5:31:97
Do stretching	10:00:00
Cleaning	4:14:31

Wastes observed

- Unnecessary handling of parts
- Unnecessary move of people
- Unnecessary ergonomic effort
- Workers waiting (Idle time)

Suggestions for Material Handling optimization

- MH is present in Warehouse, Assembly and Formulating and Filling when dealing with:
 - Movement
 - Protection
 - Storage
 - Control of materials

10 principles of Material Handling:

- Planning
- Standardization
- Work
- Ergonomics
- Unit load
- Space utilization
- System
- Environment
- Automation
- Life cycle cost

Suggested ways to improve performance

Standardize the components involved

Optimize the human factor

Automate material handling

Automated Storage and Retrieval System (AR/RS)

AR/RS description

- Composed of a variation of computer-controlled systems
- Automatically places and retrieves loads from set storage locations in a facility with precision, accuracy and speed.
- Increases ergonomics by delivering items to the operator at a convenient height, eliminating time lost to walking, searching, lifting, bending and twisting activities.
- Enables to totally integrate material handling storage

AR/RS benefits

- High Durability and low maintenance cost
- Reduces wastes related to the human factor
- Standardize the flow of products
- Easier to control and correct mistakes
- Saves floor space
- Provides highest possible storage density
- Increases labor productivity up to 85%
- Enhances product security
- Provides real-time inventory control

Automatic Guided Vehicles (VHC)

AVG benefits:

- Eliminate Damage to Structures and Product
- Increase Workplace Safety and Lower Costs
- Less Expensive more flexible than Fixed Automation Systems (conveyor systems)
 - Does not impact the work flow during implementation, like conveyors do
 - Flexibility to change locations and functions
- Reduce Utility Costs
 - Operate in higher or lower temperatures, saving AC and ventilation cost
- Increase Inventory Efficiency and Accuracy
 - Automatically track inventory, removing the need to have a professional doing it

Best option between AR/RS and AGV

- Using AVG's saves companies money in both direct and indirect ways.
 - Low installation cost
 - Lowers labor costs
 - Cheaper utility bill
 - Lower insurance premiums
 - Allows you to keep more of your revenue as profit.

Metrology

Measures imperfections in the surface of an ampoule

Measures the disparity of solutions inside recipients

Metrology considers:

- Reliability
- Accuracy of production
- Ensure that there is little waste. Where the measurement is carried out in the process will be dependent upon the type of industry that is using it.

Importance of metrology

- Metrology ensures the quality of the product.
- Getting the initial drawing right will also ensure that the project stays within budget, thereby saving money.
- Precision of measurements are crucial to comply with the safety and quality requirements for public use or consumption

Metrology at BD

- When applied at BD, Metrology contributes with:
 - Better control of the dosage of solutions inside products
 - Reduction of waste by avoiding the manufacture of non-functional parts
 - Safety for customers (Hospitals)
 - Facilitates to follow Regulations from Agencies
 - Better enables BD to design, conduct and analyze results, providing an internal feedback and evaluation about the level of accuracy when producing this product
 - Even higher reliability of the product when used in the Hospital, contributing to its high reputation

Standardization of Work

The Framework of Standardization

Benefits of standardizing work

- One of the most powerful but least used lean tools.
- By documenting the current best practice, standardized work forms the baseline for kaizen or continuous improvement.
- Reductions in variability
- Easier training of new operators
- Reductions in injuries and strain
- Standardizing the work adds discipline to the culture, essential for lean to take root.

Parts of Standardization of work

- Takt time, which is the rate at which products must be made in a process to meet customer demand.
- The precise work sequence in which an operator performs tasks within takt time.
- The standard inventory, including units in machines, required to keep the process operating smoothly.

Standardization of work related to BD

- Based on the features of BD, the most recommended tools for establishing a standard operation are:
 - Production capacity sheet
 - Standard work combination sheet
 - Standard work sheet

Production capacity sheet

					Produ	uction	Capa	city S	heet				
Part Name		Part Nr.			Date			Manager				Se	ction
Sequence	Process Name	Machine Nr.	Manua Min.	al Time Sec.	Machin Min.	Sec.	Total Min.	Time Sec.	Lot Size	Change Over Time Min. Sec.			city Comments
1	Welding Nut 1	WN2001	0	3	0	25	0	28	100	1	0	881	
2	Welding Nut 2	WN2014	0	5	0	21	0	26	1000	0	30	968	
3	Riveting Flange	RMx-20	0	7	0	27	0	34	1000	0	30	741	
4	Riveting Cover	RMx-12	0	6	0	36	0	42	500	0	15	600	
5	Quality Check	n/a	0	20	D	D	0	20	1	0	0	1260	
							0	0				#DIV/01	
							0	0				#DIV/0!	
							0	0				#DIV/0!	
		Total	0	41									

- Determines a given process' capacity for a shift, and thus its ability to meet takt time
- Based on the calculation of each process step's capacity, considering the available time per shift, completion time, and tool change time
- The process' overall capacity is defined by the bottleneck step by:
 - Changeover time reduction and machine and/or operator cycle time reduction address this step

STANDARDIZED WORK COMBINATION TABLE

- This chart shows the combination of manual work time, walk time, and machine processing time for each operation in a production sequence.
- This form is considered a more precise process design tool than the Production capacity sheet.
- It can be very helpful to identify the waste of waiting and overburden, and to confirm standard work—in—process

Standardized Work		Fron	n:		Date:									Required Units per Shift:				——н					
Combination Table	able	To:				Area:								Takt Time:			_	Walk Auto					
	. 1	Tim	e (sec.)	Seco								ecor	nds									
Work Elemen	ts	Hand		Walk		10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95100
1																							
2																							
3																							
4																							
5																							
6																							
7																							
8																							
9																							
10																							
11																							
12				\vdash																			
13																							
14																							
15																							
Totals	-		Waiting		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95 100
Iotais	1			-									Se	econ	nds								

Standard Work Sheet

- The lines should show a general flow, not every step the person takes
- It provides a graphical view of the workstation, the path of the operator and the amount of standard work-in-process required to keep the process flowing smoothly

Journal Sources

- GROSE, THOMAS K. "REPLACED BY MACHINES." ASEE Prism, vol. 26, no. 7, 2017, pp. 30–33. JSTOR, www.jstor.org/stable/44160964;
- Knowles, William H. "Economics of Industrial Engineering." Industrial and Labor Relations Review, vol. 5, no. 2, 1952, pp. 209–220. JSTOR, www.jstor.org/stable/2518972;
- Metrology. (2014). *Capricom Regional Organization*. Retrieved from https://website.crosq.org/index.php/quality-infrastructure/metrology;
- What is metrology? What does metrology mean? (2011). Bright Hub Engineering. Retrieved from https://www.brighthubengineering.com/manufacturing-technology/63936-what-is-metrology/;
- STANDARDIZED WORK: THE FOUNDATION FOR KAIZEN.https://www.lean.org/workshops/WorkshopDescription.cfm?WorkshopId=20;
- Kilmer, James M. "Space and Motion—Lessons from Industrial Engineering." *American Bar Association Journal*, vol. 61, no. 2, 1975, pp. 240–242. *JSTOR*, www.jstor.org/stable/25727077;
- Watson, Douglas J., et al. "Use of Industrial Engineering in Measuring Police Manpower: A Small City Case Study." Public Performance & Management Review, vol. 26, no. 2, 2002, pp. 132– 147. JSTOR, www.jstor.org/stable/3381274;