Regiochemically Controlled Synthesis of a β-4-β′ [70]Fullerene Bis-Adduct

Maira R. Cerón,†,§ Edison Castro,† Venkata S. Pavan K. Neti,† Paul W. Dunk,ϕ and Luis A. Echegoyen*†

†Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
§Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
ϕNational High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States

Supporting Information

ABSTRACT: A β-4-β′ C70 bis-adduct regioisomer and an uncommon mono-adduct β-malonate C70 derivative were synthesized by using a Diels–Alder cycloaddition followed by an addition–elimination of bromo-ethylmalonate and a retro-Diels–Alder cycloaddition reaction. We also report the regioselective synthesis and spectroscopic characterization of C5-symmetric tris- and C2v-symmetric tetra-adducts of C70, which are the precursors of the mono- and bis-adduct final products.

INTRODUCTION

Chemical functionalization of fullerenes has been extensively studied,1−5 mainly to increase their solubilities and to tune their electronic properties to expand their applications.2 Recently, bis-functionalization of fullerenes such as C60 and C70 has attracted considerable attention due to the higher power conversion efficiencies (PCEs) that they exhibit in organic photovoltaic (OPV) solar cells compared with their respective mono-adduct counterparts.4−9 It has also been shown that by replacing C60 with C70 higher short circuit currents and an increase in the absorption coefficient in the visible region can be obtained.8

The effects of bis-adduct isomerism on device performances of OPV solar cells has been reported; in most cases, it was observed that regioisomerically pure bis-adducts perform better than the corresponding regioisomeric mixtures.4,10−15 Consequently, regiochemically controlled multifunctionalization of fullerenes has become critical to obtain pure isomers and to avoid challenging chromatographic separations.16 There are two well-known methods to reduce the number of isomers: the tether-directed remote multifunctionalization introduced by Diederich et al.17 and the topologically controlled method introduced by Kräutler et al.18,19 Both methods have been widely used to synthesize bis-, tris-, tetra-, penta-, and hexa-derivatives of C60. However, multifunctionalization of C70 has not been extensively investigated, primarily as a result of the lower symmetry of the D5h-C70 compared to that of the Ih-C60 which increases the number of isomers. Thus, when identical addends are used and additions exclusively to [6,6]-bonds are considered, the number of statistically possible bis-regioisomers are 8 for C60 and 64 for C70. There are very few examples of tris- and tetra-adducts of C70; the first one was reported in 1995 by Diederich et al.20 They started from the 5 o’clock or the 12 o’clock bis-adduct α-9-α′ or α-6-α′, respectively, using a recently introduced nomenclature21 and added an excess of bromo-ethylmalonate to obtain one tris-adduct and one C2v-symmetric tetra-adduct isomer, respectively.22,23

The synthesis of all possible C70 bis-adduct isomers in a selective manner has not been reported. Here, we report the synthesis of a bis-regioisomer using a Diels–Alder cycloaddition followed by an addition–elimination of bromo-ethylmalonate and finally a retro-Diels–Alder cycloaddition reaction to obtain the β-4-β′ bis-regioisomer.

RESULTS AND DISCUSSION

We synthesized regioselectively the C70 α-6-α′ bis-anthracene (BA-C70) using the previously reported Diels–Alder cycloaddition reaction of C70 with molten anthracene.24 α-6-α′ BA-C70 was used as a directing group to decrease the number of
possible tris- and tetra-adducts. Starting from BA-C\(_{70}\), a total of 11 tris-adduct isomers, including one Cs- and one C\(_{2v}\)-symmetric and 16 tetra-adducts and one C\(_{2v}\)-symmetric, can be obtained (Figure 1).

![Figure 1](image)

Figure 1. (a) Eleven possible tris-adducts starting from \(\alpha\)-6-\(\alpha'\) BA-C\(_{70}\). (b) Sixteen possible tetra-adducts starting from the shown tris-adduct. Circled bonds are the \(C_\alpha\) and \(C_\beta\)-symmetric tris- and tetra-adducts. The \(\alpha\)-bonds are depicted in yellow; \(\beta\)-bonds are depicted in blue, and \(\gamma\) and \(\delta\)-bonds are depicted in red and green, respectively.

Bis-anthracene mono-Bingel C\(_{70}\) tris-adduct (BA-MB-C\(_{70}\)) and bis-anthracene bis-Bingel C\(_{70}\) tetra-adduct (BA-BB-C\(_{70}\)) were synthesized via a Bingel cycloaddition reaction of \(\alpha\)-6-\(\alpha'\) BA-C\(_{70}\) with bromo-ethylmalonate in the presence of DBU in the dark (Scheme 1). BA-MB-C\(_{70}\) and BA-BB-C\(_{70}\) were purified using silica gel column chromatography and characterized by UV-vis, 1D and 2D NMR spectroscopy, mass spectrometry, thermal gravimetric analysis (TGA), and CV. Using MALDI-TOF, we confirmed the addition of one and two ethylmalonate groups to the [70]fullerene cage ([m/z 998.0551 and 1156.1184], respectively. As reported,\(^{24}\) we were not able to observe the molecular ion peak of the C\(_{70}\) mono-anthracene nor that of the BA-C\(_{70}\) under these conditions. Therefore, \(^1\)H NMR spectroscopy was used to verify the presence of the anthracenes.

The \(^1\)H NMR spectrum of BA-MB-C\(_{70}\) exhibits half of the possible number of signals for the anthracenes (two sets of signals). Two quartets and two triplets corresponding to the ethylmalonate addends were also observed (Figure 2a). These results indicate that BA-MB-C\(_{70}\) is the only \(C_\gamma\)-symmetric regioisomer out of the 11 possible tris-adducts (Figure 1a). 34 signals for the sp\(^2\) carbons were observed in the \(^{13}\)C NMR spectrum (Figure S6), in agreement with the \(C_\gamma\)-symmetry observed in the \(^1\)H NMR. The preferential formation of a single \(C_\gamma\)-symmetric tris-adduct starting from the \(\alpha\)-6-\(\alpha'\) bis-adduct was supported by MO calculations, which showed that the calculated \(\alpha\)-6-\(\alpha'\) bis-adduct has enhanced LUMO coefficients at the \(C_\gamma\)-symmetric \(\beta\)-bonds.\(^{22}\) Addition to any of the other \(\alpha\)- or \(\beta\)-bonds will result with a sterically congested product.

To unambiguously determine the addition pattern of BA-MB-C\(_{70}\) and to synthesize a new Bingel C\(_{70}\) mono-adduct, a retro-Diels–Alder cycloaddition reaction of this compound was performed in vacuum. After the product was washed with MeOH, a change in color (from dark green to red brown) and in polarity was observed, indicating the loss of the anthracene groups (14.20 mg, >99% yield, Scheme 2a). The absence of the anthracene groups on mono-Bingel-C\(_{70}\) (MB-C\(_{70}\)) was verified by \(^1\)H NMR, where only two quartets and two triplets corresponding to the ethylmalonate addend were observed (Figure 2b). The \(^{13}\)C NMR spectrum of MB-C\(_{70}\) showed 34 signals for the sp\(^2\) carbons (Figure S15), in agreement with the \(C_\gamma\)-symmetry observed by \(^1\)H NMR. Additionally, we confirmed that MB-C\(_{70}\) corresponds to the \(\beta\)-isomer by comparison of the UV-vis absorption spectrum with those of previously reported \(\beta\)-pyrrolidine C\(_{70}\) derivatives (Figure S13).\(^{3,25}\) As far as we know, this synthetic approach becomes the only methodology to selectively synthesize the uncommon \(\beta\)-Bingel mono-adduct.\(^{2,26,27}\)

The number of possible tetra-adduct isomers that can be obtained starting from the BA-MB-C\(_{70}\) tris-adduct\(^{3,22}\) is 16, and only one is \(C_{2v}\)-symmetric (Figure 1b).\(^{20,21}\)

The \(^1\)H NMR spectrum of BA-BB-C\(_{70}\) exhibited half of the possible number of signals for the two anthracenes and for the two ethylmalonate groups (Figure 3a). Therefore, BA-BB-C\(_{70}\) can be unambiguously assigned to the only possible \(C_\gamma\)-symmetric regioisomer (Figure 1b).\(^{20,21}\) The \(^{13}\)C NMR spectrum showed 18 signals for the sp\(^2\) carbons, in agreement with the presence of two planes of symmetry and a \(C_2\)-rotation (Figure S10). The NOESY-NMR spectrum of BA-BB-C\(_{70}\) exhibited a weak correlation between the methyl (---CH\(_3\)) protons of the ethyl malonates and the methylene protons of the anthracene addends (Figure S8).\(^{22}\) This correlation shows that the third and fourth additions occurred at the \(C_\beta\)-symmetric \(\beta\)-bonds close to the anthracene groups and not to the other possible \(\alpha\)- or \(\beta\)-bonds, for which no correlation would be observed.\(^{22}\)

To synthesize a totally unique bis-adduct regioisomer of C\(_{70}\), a thermal retro-Diels–Alder reaction of BA-BB-C\(_{70}\) was performed (Scheme 2b). As before we also observed a change of the color and polarity of the sample, indicating the successful retro-Diels–Alder removal of the anthracene groups (37.17 mg, >99% yield). The absence of the anthracene groups of the bis-Bingel C\(_{70}\) (BB-C\(_{70}\)) compound was confirmed by \(^1\)H NMR (Figure 3b). The UV-vis absorption spectrum of BB-C\(_{70}\) (Figure S13) was compared with all of the known spectra of pure C\(_{70}\) bis-adducts, and no matches were observed.\(^{4,20,21,24,25,27,28}\) Both the \(^1\)H NMR and UV-vis characterization indicated that this compound corresponds to the previously unreported \(\beta-4-\beta'\) bis-adduct regio-isomer BB-C\(_{70}\). This approach can be used to synthesize other potentially high-performing bis-adduct C\(_{70}\) fullerene acceptors for photo-voltaic applications.

The TGA traces of BA-MB-C\(_{70}\) and BA-BB-C\(_{70}\) were recorded upon increasing the temperature at a rate of 3 °C min\(^{-1}\) under a flow of 15 psi of ultrahigh purity N\(_2\) (Figure 4). For BA-MB-C\(_{70}\) a 13% weight loss was calculated starting at 161 °C followed by a 13% weight loss starting at 200 °C.

\[\text{DOI: 10.1021/acs.joc.6b02301} \]
\[\text{J. Org. Chem. 2017, 82, 891–897}\]
corresponding to two distinct steps due to the consecutive loss of the two anthracenes. We also observed a 12% weight loss starting at 340 °C corresponding to the loss of the ethylmalonate addend. These results confirm the presence of the tris-adduct. For BA-BB-C70, we observed two distinct steps each of 12% weight loss at 149 and 196 °C, respectively, which correspond to the consecutive loss of the two anthracenes followed by two indistinct steps of 20% weight loss at 340 °C, corresponding to the loss of the two ethylmalonate addends.

The redox properties of BA-MB-C70, BA-BB-C70, MB-C70, and BB-C70 were measured by CV in dichloromethane solutions using 0.1 M n-Bu4NPF6 as supporting electrolyte. The results are summarized in Table 1. As expected, with more addends on the C70 cage, we observed a higher cathodic shift with respect to the values for the pristine fullerene C70. The CV of bis-, tris-, and tetra-adducts showed irreversible cathodic electrochemical behavior, in agreement with previous reports in which potentials more negative than −1.2 V lead to irreversible retro-Bingel cycloadditions.39,40 In the case of the mono-adduct, the first and second reduction waves were chemically and electrochemically reversible, similar to the Bingel-C70 α-isomer.41−43 To achieve retro-cycloaddition of the Bingel-C70 β-isomer, a more negative potential was required, close to −2 V, unlike its α-isomer, for which the retro-cycloaddition is observed at −1.4 V.42−44 We also observed one quasi-reversible oxidation due to the presence of the anthracene addends for the bis- and tetra-adduct and one reversible oxidation (E1/2 = 0.76 V) for the tris-adduct.

CONCLUSION
We successfully synthesized a β-4-β′ C70 bis-regioisomer and an uncommon β-Bingel C70 mono-isomer using an addition−retro-addition Diels−Alder reaction and an addition−elimination of bromo-ethylmalonate. This reaction sequence could be useful to synthesize previously unobserved C70 bis-regioisomers. We also report the regioselective synthesis and spectroscopic characterization of the C7-symmetric tris- and C2v-symmetric tetra-adducts of C70.

EXPERIMENTAL SECTION
Synthesis of BA-MB-C70 and BA-BB-C70. Bis-anthracene-C70 (BA-C70) was synthesized as previously reported and purified immediately before the next reaction.24 BA-C70 (20.0 mg, 0.015 mmol, 1 equiv) was dissolved in 8 mL of anhydrous o-DCB and protected from light. Bromo-ethyl malonate (3.6 mg, 0.124 mmol, 8 equiv) and 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) (47.1 mg, 0.309 mmol, 20 equiv) were added, and the mixture was stirred under...
a nitrogen atmosphere for 3 h at room temperature. The solvent from the reaction mixture was removed with nitrogen, and the crude product was purified by silica gel column chromatography using CS$_2$ as eluent to separate the unreacted BA-C$_{70}$ followed by CS$_2$/CHCl$_3$ (4/1 ratio) to collect BA-MB-C$_{70}$ (3.67 mg, 16% yield). Finally, CS$_2$/CHCl$_3$ (1/1 ratio) was used to collect BA-BB-C$_{70}$ (14.10 mg, 57% yield).

HPLC chromatograms for the crude and pure compounds are shown in the Supporting Information.

Characterization of BA-MB-C$_{70}$

MALDI-TOF: [M-(356.1565)]$^+$ calcld for [C$_{112}$H$_{40}$O$_8$-(C$_{14}$H$_{10}$)$_2$]$^+$ 1156.1158; found 1156.1184. 1H NMR (CDCl$_3$/CS$_2$ (7/3), 600 MHz, 298 K): δ 7.63 (d, 2H$_{ar}$, J = 6.52), 7.53 (d, 2H$_{ar}$, J = 6.52), 7.32 (m, 4H$_{ar}$), 5.53 (s, 1H), 5.24 (s, 1H), 4.52 (q, 2H, J = 7.12), 4.26 (q, 2H, J = 7.12), 1.49 (t, 3H, J = 7.11), 1.21 (t, 3H, J = 7.11) ppm.

13C NMR (CDCl$_3$/CS$_2$ (7/3), 150 MHz, 298 K): δ 164.63, 163.94, 163.52, 153.23, 153.04, 152.57, 152.15, 151.90, 151.18, 150.85, 150.42, 148.79, 148.46, 147.75, 143.74, 141.69, 141.47, 141.36, 141.31, 141.18, 141.15, 140.94, 140.80, 140.34, 139.71, 138.66, 137.81, 136.63, 136.59, 133.81, 132.67, 128.43, 127.15, 127.00, 125.86, 125.74, 125.54, 125.47, 66.40, 65.76, 65.70, 65.64, 63.73, 63.13, 62.83, 39.85, 58.47, 57.47, 55.84, 14.34, 14.10 ppm.

Characterization of BA-BB-C$_{70}$

MALDI-TOF: [M-(356.1565)]$^+$ calcld for [C$_{105}$H$_{30}$O$_4$-(C$_{14}$H$_{10}$)$_2$]$^+$ 998.0579; found 998.0551. 1H NMR (CDCl$_3$/CS$_2$ (7/3), 600 MHz, 298 K): δ 7.70 (d, 2H$_{ar}$, J = 7.17), 7.61 (d, 2H$_{ar}$, J = 6.90), 7.56 (d, 2H$_{ar}$, J = 6.90), 7.51 (d, 2H$_{ar}$, J = 7.17), 7.39 (t, 2H$_{ar}$, J = 7.17), 7.34 (t, 2H$_{ar}$, J = 7.17), 7.30 (m, 4H$_{ar}$), 5.57 (s, 1H), 5.36 (s, 1H), 5.26 (s, 1H), 5.24 (s, 1H), 4.52 (q, 2H, J = 7.12), 4.26 (q, 2H, J = 7.12), 1.49 (t, 3H, J = 7.11), 1.21 (t, 3H, J = 7.11) ppm.

13C NMR (CDCl$_3$/CS$_2$ (7/3), 150 MHz, 298 K): δ 159.45, 159.08, 155.94, 155.52, 153.32, 153.04, 152.57, 152.15, 151.90, 151.18, 150.85, 150.42, 148.79, 148.46, 147.75, 143.74, 141.69, 141.47, 141.36, 141.31, 141.18, 141.15, 140.94, 140.80, 140.34, 139.71, 138.66, 137.81, 136.63, 136.59, 133.81, 132.67, 128.43, 127.15, 127.00, 125.86, 125.74, 125.54, 125.47, 66.40, 65.76, 65.70, 65.64, 63.73, 63.13, 62.83, 39.85, 58.47, 57.47, 55.84, 14.34, 14.10 ppm.

Figure 3. 1H NMR spectrum (600 MHz; CDCl$_3$, 298 K) of (a) BA-BB-C$_{70}$ and (b) BB-C$_{70}$.

Figure 4. TGA of BA-MB-C$_{70}$ (red) and BA-BB-C$_{70}$ (black) obtained up to 800 °C using a linear 3 °C min$^{-1}$ ramp method.

Figure 5. Cyclic voltammetry in dichloromethane solutions of BA-MB-C$_{70}$, BA-BB-C$_{70}$, MB-C$_{70}$, and BB-C$_{70}$.
Characterization of BB-C	extsubscript{70}.

Table 1. Redox Potentials	extsuperscript{a} of BA-MB-C	extsubscript{70}, BA-BC-C	extsubscript{70}, MB-C	extsubscript{70}, and BB-C	extsubscript{70}

<table>
<thead>
<tr>
<th></th>
<th>BA-MB-C	extsubscript{70}</th>
<th>BA-BC-C	extsubscript{70}</th>
<th>MB-C	extsubscript{70}</th>
<th>BB-C	extsubscript{70}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E^{0+}_{\text{vis}})</td>
<td>0.81</td>
<td>0.80</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>(E^{0+}_{\text{vis}})</td>
<td>-1.46</td>
<td>-1.50</td>
<td>-1.20</td>
<td>-1.25</td>
</tr>
<tr>
<td>(E^{1/2}_{\text{red}})</td>
<td>-1.81</td>
<td>1.88</td>
<td>-1.55</td>
<td>-1.61</td>
</tr>
<tr>
<td>(E^{1/2}_{\text{red}})</td>
<td>-2.22</td>
<td>-</td>
<td>-1.96</td>
<td></td>
</tr>
<tr>
<td>(\text{LUMO}^\text{b})</td>
<td>-3.9</td>
<td>-3.8</td>
<td>-4.0</td>
<td>-4.1</td>
</tr>
</tbody>
</table>

aValues obtained by CV in VS \(F/F^+\); bValues obtained using the following formula \(E_{\text{LUMO}} = -\left(E_{\text{anodic onset}} - E_{\text{red onset}} \right) + 5.1 \) eV.

References

1. Hirschi, A.; Brettreich, M. In Fullerenes; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004; p 383.