
polymers

Article

Nanoforest: Polyaniline Nanotubes Modified with
Carbon Nano-Onions as a Nanocomposite Material
for Easy-to-Miniaturize High-Performance
Solid-State Supercapacitors

Piotr Olejnik 1,2,*, Marianna Gniadek 2 , Luis Echegoyen 3 and
Marta E. Plonska-Brzezinska 4,*

1 Institute of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
2 Department of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland;

mgniadek@chem.uw.edu.pl
3 Department of Chemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA;

echegoyen@utep.edu
4 Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok,

Mickiewicza 2D, 15-222 Bialystok, Poland
* Correspondence: polejnik@chem.uw.edu.pl (P.O.); marta.plonska-brzezinska@umb.edu.pl (M.E.P.-B.)

Received: 11 November 2018; Accepted: 14 December 2018; Published: 19 December 2018 ����������
�������

Abstract: This article describes a facile low-cost synthesis of polyaniline nanotube (PANINT)–carbon
nano-onion (CNO) composites for solid-state supercapacitors. Scanning electron microscopic
(SEM) analyses indicate a uniform and ordered composition for the conducting polymer nanotubes
immobilized on a thin gold film. The obtained nanocomposites exhibit a brush-like architecture with
a specific capacitance of 946 F g−1 at a scan rate of 1 mV s−1. In addition, the nanocomposites offer
high conductivity and a porous and well-developed surface area. The PANINT–CNO nanocomposites
were tested as electrodes with high potential and long-term stability for use in easy-to-miniaturize
high-performance supercapacitor devices.
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1. Introduction

Electronic technology has been intensively developed over the last several decades. New research
trends are focused on creating novel, fast-responding, and miniaturized electronic devices. To increase
the energy, semiconductors have been replaced by carbon and organic materials such as proteins,
conducting polymers, or their combinations. Such combinations of at least two materials of
different chemical nature are called composites [1–3]. Previous research investigated polymers
containing a π–electron conjugated system in their structures, e.g., polyaniline (PANI), polythiophene,
and polypyrrole. These polymers are characterized by high values of the specific conductivity, which
can be controlled by the oxidation state, pH [4], and type of dopant ions [5]. Such flexibility, in
combination with their properties, corrosion resistivity, and chemical neutrality opens up numerous
possibilities for their application in electronic devices.

PANI is a pioneering representative of the conducting polymer group. The PANI chains consist of
−p-coupled aniline units (Scheme 1) [6]. The combination of benzenoid and quinoid rings leads to
different oxidation states for the PANI polymer: leucoemeraldine, emeraldine, and pernigraniline. Due
to the presence of negative polarons, the green emeraldine form of PANI exhibits electroconductive
properties. In addition to advantages such as a high conductivity of 9 S cm−1 [7], high chemical stability,

Polymers 2018, 10, 1408; doi:10.3390/polym10121408 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0003-2206-5174
https://orcid.org/0000-0002-0538-6059
http://www.mdpi.com/2073-4360/10/12/1408?type=check_update&version=1
http://dx.doi.org/10.3390/polym10121408
http://www.mdpi.com/journal/polymers


Polymers 2018, 10, 1408 2 of 19

and low-cost chemical or electrochemical preparation methods, this polymer also exhibits potential
capacitive properties. The capacitance strongly depends on the chemical and physical properties of the
polymer, which are frequently a consequence of the synthesis procedure.
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The effectiveness of supercapacitors (SCs) is determined by several important material factors,
including electroconductivity, type of dopant ions, specific surface area, morphology, and pore size,
as well as the material arrangement, distribution, and orientation with respect to the surface [8].
In particular, morphology is a crucial parameter for solid-state devices, because it can increase the
interface between an electrode and electrolyte [9]. Therefore, nanostructured conducting polymers
have received attention due to their high surface area-to-volume ratio and high surface free energy [10].
There are several synthetic pathways for aniline oxidation and different types of nanostructure
production, which lead to the formation of different phases for PANI. The most popular methods are
chemical oxidation [11], template methods [12], and electrochemical processes [13], with less popular
methods involving sonochemical [14] or radiation approaches [15]. Dhawale et al. have reported
a specific capacity of 503 F g−1 for bulk PANI synthesized via a chemical bath deposition method
measured at a sweep rate 10 mV s−1 in 1 M of H2SO4 [16]. For comparison, the specific capacity for a
PANI nanofiber-modified electrode obtained in the same acid solution in the presence of an ammonium
persulfate oxidant, was determined to be 235 F g−1 [17]. The above-mentioned methods enable one to
realize randomly aggregated granules, nanoroughened polymer hydrophobic surfaces, nanospheres
surrounded by surfactant molecules, nanofibers, or nanotubes inside the membrane matrix [18].

One of the most common techniques for the formation of polymer nanostructures is template
synthesis, which is often used in the controlled fabrication of PANI nanotubes (PANINT) [12,19].
Template selection enables control over the nanotube length and its internal cavity diameter, which
consequently affects the nanostructure’s properties. The mechanism for nanotube formation is based
on the aniline nucleating a stacking process, which is stabilized by π–π interactions between phenazine
structures [20]. Due to the strong intermolecular interaction between polymer chains, PANINT reveals
high conductivity relative to bulk polymer films [21–23]. Martin et al. confirmed experimentally
that the conductivity for randomly distributed PANINT depends on the nanotube size, and is six
times higher than that of the macromolecular polymer [7]. Therefore, the electric properties for
nanostructures (conductivity and capacity) can be enhanced by increasing the degree of material
order [24,25]. In the case of PANINT, the most effective ordering occurs for nanostructures that
are oriented perpendicular to the surface. Such arrangement enables easier internal and external
nanotube modification, which can significantly increase the total specific surface area, which is the
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most important parameter in the SC field [26,27]. PANINT are also only slightly soluble in common
organic solvents, which is crucial for chemical stability.

Despite the many advantages of conducting polymers, they also exhibit certain disadvantages
that limit the polymers’ practical use in SCs. For example, these polymers cannot be utilized on their
own as SC electrodes due to a poor power density, low charge exchange rates, and poor long-term
stability during the charge–discharge processes, which lead to electrode damage [28]. To overcome
these disadvantages, composite materials are frequently used as electrodes for SCs. Material systems
often used as electrodes in SCs are carbon nanomaterials (CNs) and conducting polymers. Combining
conducting polymers with CNs mainly enhances the specific surface area, inducing high porosity,
facilitating electron and proton conduction, increasing the number of active sites, protecting active
materials from mechanical degradation, and improving cycling stability [29–32]. PANI composites with
CNs, such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs)
or graphene (G) and graphene oxide (GO) sheets, have been reported. The specific capacitance for
the above listed PANI/carbon nanocomposites are: 485 F g−1, 560 F g−1, 413 F g−1, and 375 F g−1,
respectively [33–36].

In this report, we focus on the synthesis of a composite containing PANINT and multilayered
fullerenes, frequently called as carbon nano-onions (CNOs). CNOs consist of a hollow spherical
fullerene core surrounded by concentric and curved graphene layers with progressively increasing
diameters. The interlayer distance between neighboring layers is 0.335 nm [37,38]. These CNOs can
have different sizes and shapes, which, in turn, determine their physical properties and chemical
reactivity [39–42]. In our study, we used small spherical CNOs obtained by the graphitization of
nanodiamond particles (NDs, 5 nm) at high temperature under partial vacuum [42,43]. These CNOs
show the unique combination of mechanical properties with chemical and physical properties [44,45].
They possess a relatively high surface-to-volume ratio, high conductivity, and high thermal
stability. These properties, with the combination of satisfactory compatibility, can lead to the
preparation of composite materials. Their high reactivity when compared with CNs enables one
to create homogeneous three-dimensional (3D) composite materials using both organic and inorganic
components [45–48]. The reactivity of fullerene-like structures, including CNOs, decreases with
increasing size due to a decrease in the curvature of the surface, due to decreased strain. Additionally,
the ability to functionalize CNO surfaces depends on the presence of defects on the carbon surface
as well as on the presence of carbon atoms with sp2 hybridization. The integration of CNOs with
other substances can lead to interesting materials possessing properties of the individual components.
In particular, the combination of CNOs with conducting polymers yields new materials [29–32], which
are highly attractive as electrode materials for electrochemical and biomedical purposes. We have
already emphasized that the organization of the two components in the matrix, and the scale on which
this occurs, have a decisive influence on the physicochemical properties of the synthesized materials.

2. Materials and Methods

2.1. Materials

Aniline monomer and sulfuric acid 95–97% were purchased from POCh (Gliwice, Poland).
Ammonium persulfate 98% (NH4)2S2O8, N-hydroxysuccinimide (NHS), and 1-ethyl-3-(3-dimethyl
aminopropyl) carbodiimide hydrochloride (EDC) were purchased from Sigma Aldrich (Saint Louis,
Missouri, USA) and used as received. Chloroform was obtained from Chempur (Piekary Slaskie,
Poland). Aluminum oxide powder was purchased from Buehler Micropolish (Esslingen, Germany).
All of the reagents (p.a. grade) were used without further purification. All of the solutions were
prepared using water purified by a Milli-Q system from Merck (Darmstadt, Germany) with a resistivity
of 18.2 MΩ and pH of 7.



Polymers 2018, 10, 1408 4 of 19

2.2. Polyaniline Nanotube Matrix Synthesis

PANINT synthesis was accomplished by the template method. Whatman Nuclepore polycarbonate
(PC) membranes (with diameter 200 nm) were used as templates. The synthesis process was conducted
in 1 M of sulfuric acid medium by the chemical oxidation of the aniline monomer using ammonium
persulfate as oxidant. In a typical experiment, a PC membrane was coated on one side with a
thin, uniform gold film using a plasma sputter coater (Leica ACE 200, Wetzlar, Germany) by vapor
deposition. The modified template was then soaked in five mL of 0.3 M of aniline acidic medium for
30 min before being mixed with the same volume of 0.3 M of (NH4)2S2O8 in one M of sulfuric acid
solution. The reaction vessel was kept at a low temperature (~4 ◦C). The typical reaction time was
approximately three hours. Subsequently, the membrane was dissolved in chloroform and removed.
Next, the separated thin gold film with PANINT was carefully rinsed with deionized water.

2.3. Synthesis of Pristine and Oxidized CNOs

Pristine CNOs: Commercially available nanodiamond powder (NDs, Carbodeon
µDiamond®Molto, Vantaa, Finland) with a crystal size between four and six nm and nanodiamond
content larger than 97 wt %), was used for the preparation of spherical CNOs using the procedure
proposed by Kuznetsov et al. [49] NDs were placed in a graphite crucible and transferred to an Astro
carbonization furnace. Annealing of the ultradispersed NDs was carried out at 1650 ◦C under a
1.1 MPa He atmosphere using a heating rate of 20 ◦C min−1. The final temperature was maintained for
one hour; then, the material was slowly cooled to room temperature. The furnace was opened, and the
CNOs were annealed in air at 400 ◦C to remove any amorphous carbon.

Oxidized CNOs (CNOsox): The oxidation of pristine CNOs was conducted as originally described
by Lieber et al. for SWNT [50], and later applied to CNOs in our laboratory. Then, 100 mg of pristine
CNOs was dispersed by ultrasonication for 30 min and refluxed for 48 h in 3.0 M of aqueous nitric acid.
The mixture was later centrifuged for 10 min followed by collection of the black powder that formed
in the bottom of the test tube. Then, Salzmann’s protocol was applied to purify the oxidized CNOs
(CNOsox) [51]. The resulting oxidized product was stirred in 3.0 M of NaOH and washed several times
with distilled water until a final pH of 7 was reached, and then dried overnight at 110 ◦C.

2.4. Methods

The PANI nanotubes/CNOsox layers deposited on the electrode surface were studied using
a FEI Tecnai S-3000N (Tokyo, Japan) and a Merlin (Zeiss, Germany) field-emission scanning
electron microscope (SEM). The CNOsox nanostructures were examined by a transmission electron
microscope (TEM) system Libra 120 (Zeiss, Germany). A digital optical microscope HIROX KH-87000
(Tokyo, Japan) was used for the preliminary observation of the nanocomposite material morphology
and arrangement.

The infrared spectra were recorded using a NICOLET IN10 MX infrared microscope (Thermo
Scientific, Waltham, Massachusetts, USA). The microscope was operated mainly in reflectance mode,
and the Mercury-Cadmium-Telluride (MCT) detector cooled with liquid nitrogen. The spectra were
collected for a 100-µm (area 0.01 mm2) square region of the sample. For typical measurements,
the spectral resolution was 4 cm−1, and 256 scans were averaged to obtain a single spectrum.
The spectrum of the pristine CNOsox was recorded in a potassium bromide (KBr) pellet using the
microscope in transmission mode. Additionally, the above-mentioned MCT detector was utilized for
mapping the nanostructural layers.

The Raman experiments were carried out using a Renishaw Raman InVia Microscope
(Wotton-under-Edge, United Kingdom) equipped with a high-sensitivity ultralow-noise Charge
Coupled Device (CCD) detector. The Raman module was equipped with a microstage that enabled the
measurement of a sample in reflectance mode. The instrument was operated using an Ar ion laser
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with the 514-nm excitation line. For typical measurements, the spectral resolution was 4 cm−1, with
three scans (each of 10-s duration) averaged to obtain a single spectrum.

The electrochemical experiments were carried out using an AUTOLAB (Utrecht, The Netherlands)
potentiostat/galvanostat with the NOVA software from AUTOLAB (Utrecht, The Netherlands).
A typical three-electrode configuration was used with a glassy carbon (GC) disk electrode (two mm
diameter) as the working electrode, Ag/AgCl (with saturated KCl) as the reference electrode, and a
platinum mesh as the auxiliary electrode. The geometrical area of the glassy carbon electrode was
equal to 0.0314 cm2. The working electrode was polished with 0.5-µm alumina powder on a polishing
wheel, and subsequently washed thoroughly several times with deionized water and ethanol, before
being allowed to dry at room temperature. All of the measurements were performed in anaerobic
conditions at room temperature (22 ± 2 ◦C). To remove all of the dissolved oxygen, the measuring cell
was Ar-purged 15 min before the experiments began.

3. Results and Discussion

3.1. Nanocomposite PANINT/CNOsox Electrode Preparation Procedure

Schemes 2 and 3 show the simplified procedures that were used for the covalent functionalization
of PANINT with CNOox, which resulted in the creation of the nanocomposites. Briefly, the composite
preparation procedure was based on two steps. In the first approach, PANINT synthesis was
accomplished by the template method described in detail in the Experimental section and schematically
presented in Scheme 2. After removal of the PC membrane, the organized PANINT layer was formed
on a gold surface.
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Scheme 3. The simplified procedures used for the covalent functionalization of PANINT with CNOox.

Next, the GC electrode was repeatedly covered with an Au/PANINT nanotube film. The covalent
functionalization of the Au/PANINT layers with CNOsox was promoted via water-soluble carbodiimide
(EDC) and N-hydroxysuccinimide (NHS). This step was carried out without contact with PANINT.
The procedure used was as follows: initially, one mg of CNOsox was placed in a solution of 10 mM
NHS and 40 mM EDC for one hour (Scheme 3). During this reaction, the carboxylic groups of the
CNOs were transformed into reactive N-hydroxysuccinimide esters. After the activation step, CNOsox

without solvent were added to one mL of ethanol, and the mixture was ultrasonicated for 0.5 h to
obtain a dusky gray, uniform, and stable suspension. In the final step, the activated CNOox suspension
was transferred to the Au/PANINT surface, and after the formation of the amide bonds, the excess of
unreacted carbon nanoparticles in the solution was removed from the electrode surface. The formed
Au/PANINT/CNOox layers were tested as supercapacitors.

3.2. Raman and Infrared Spectroscopy Studies of PANINT/CNOsox

Raman and infrared spectroscopy were utilized as the main experimental techniques for the
qualitative characterization of the composite materials containing the carbon nanoparticles. Figure 1
shows the Raman spectrum of the oxidized CNOs. The spectrum was excited at a wavelength of
514 nm. In general, the spectrum is composed of four characteristic peaks [52], which correspond to the
contribution of the hexagonal mode characteristics of graphene or graphite. The most distinctive signal
at approximately 1577 cm−1 is called the G band, which corresponds to the in-plane optical mode of
vibration for two adjacent sp2 carbon atoms on an ideal hexagonal ring of graphite. The G bandwidth
depends on the amount of deformed chains and hexagonal rings. A wider G band corresponds to a
lower order in the structure [53]. The spectra are dominated by the D band at 1340 cm−1. The presence
of the D band is due to defects in the carbon crystalline curved structure. The larger D band intensity
is connected with a higher structural disorder, which is caused by the presence of oxygen functional
groups on the CNOsox surface. Additional combined tones for the peaks are located at 2674 cm−1 (2D)
and 2925 cm−1 (D + G). The 2D band reflects a two-photon process engaging phonons with opposite
wave vectors.
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Figure 1. Raman spectrum of oxidized CNOs adsorbed on a glassy carbon electrode (GCE) surface
recorded using a 514 nm excitation line.

Figure 2 shows the typical Raman spectra for the vertically oriented PANINT and the
PANINT/CNOsox nanocomposite. The spectra were also excited at a wavelength of 514 nm using a
He–Ne laser. The applied excitation frequency falls in the absorption range of PANINT, thereby affecting
the spectral enhancement, which is slightly shifted relative to that observed for the macromolecular
form of PANI [54]. The low wavenumber region for the pristine PANINT spectrum contains bands
at 520 cm−1 and 814 cm−1 corresponding to N–H and C–H out of plane deforming vibrations of
the quinonoid ring, respectively (Figure 2B). The signal at 573 cm−1 is assigned to phenoxazine and
phenazine-type unit vibration [55,56]. The band near 1170 cm−1 is attributed to the C–H bending
vibrations for the bipolaronic, semi-quinonoid rings. This band includes a less visible shoulder at
1192 cm−1 connected with C–H in-plane benzenoid ring bending. The signals at 1335 cm−1 and those
near 1250 cm−1 are characteristic for charge carriers and correspond to delocalized polaronic units and
ring deformation vibrations, respectively [57,58]. This indicates that the polymer nanotubes are in a
conductive form. The PANINT spectrum also exhibits two specific peaks: a single peak at 1496 cm−1,
which is connected to the C=N stretching mode of the quinonoid units, and double peaks in the range
of 1518 cm−1 to 1620 cm−1, which provide information for the C–C and C=C stretching vibrations in
the above-mentioned structures [59]. In the case of the PANINT/CNOsox nanocomposite (Figure 2A),
the spectrum confirms the presence of carbon and polyaniline nanostructures, and contains previously
described characteristic signals.
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Figure 2. Raman spectra of (A) PANINT/CNOsox nanocomposites immobilized on GCE/Au,
and (B) vertically oriented PANINT, recorded using excitation at 514 nm.

The PANINT/CNOsox composite was also characterized by Fourier transform infrared (FTIR),
as shown in Figure 3. The nanocomposite spectrum (Figure 3A) does not differ much from that for
the pristine polymer nanotubes (Figure 3B). The most typical signals are located at 837 cm−1 and
1165 cm−1, which correspond to the C–H out-of-plane deformations and in-plane bendings in the
benzene ring [60]. The peaks assigned to 1504 cm−1 and 1589 cm−1 are connected with the characteristic
C=C stretching vibration of the benzenoid and quinonoid rings, respectively. The bands near 1225 cm−1

and 1310 cm−1 originate from the C=N and C–N stretching vibrations, respectively. The broad signals
at higher frequencies (3000–3500 cm−1) are connected with the free N–H stretching vibrations [61,62].
The presence of CNOsox in the composite structure is confirmed by the poorly defined peak at
1760 cm−1, which can be assigned to the carbonyl group stretching vibrations. The oxidized CNOs
beyond carbonyl groups may also contain different surface functional species, including oxygen
(Figure 3C) [63]. The increased intensity in the high frequency range (2900–3500 cm−1) could also
indicate the successful functionalization of the CNO surface by hydroxyl groups.
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Figure 3. Infrared spectra of (A) PANINT modified by CNOsox immobilized on a thin gold film, (B) pure
vertically formed PANI nanotubes, and (C) CNOsox. Spectra recorded at room temperature using
reflectance (A,B) and transmission (C) modes.

Figure 4 shows measurements performed using an infrared mapping method. The measurement
maps show the optical distribution of specific signals, with the signal intensity imaged using an
appropriate color. The red color indicates the highest intensity signal or the whole spectrum. The
images captured by an optical microscope reveal a large fragment of the PANINT/CNOsox/Au surface
with dimensions of 700 µm × 800 µm. A point spectrum for the nanocomposite material containing
all the characteristic signals described and present in Figure 3A is shown in Figure 4D. Figure 4A
illustrates the distribution profile for the PANINT/CNOsox specific spectrum, and indicates the total
surface coverage with a uniform nanocomposite film. A high degree of surface coverage is one of
the most important parameters for electrode construction and good performance. The arrangement
profile for the conductive PANINT (Figure 4B) based on the characteristic peak (1589 cm−1) shows the
presence of nanotubes across the entire experimental area. In the case of the CNOsox, the infrared map
shows more blue areas, which indicates a lower intensity for the C=O stretching vibrations for the
surface oxygen functional groups (Figure 4C). This finding reflects the small size of the CNOs and
their easy aggregation.
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Figure 4. The optical distribution for: (A) complete spectrum, (B) the characteristic signal for the
C=C and C=N stretching vibrations in PANINT benzenoid rings at 1589 cm−1, (C) the C=O stretching
vibrations at 1760 cm−1, and (D) infrared mapping set for vertically formed PANINT modified by
CNOsox immobilized on a thin gold film with the nanocomposite spectra.

3.3. Nanocomposite Morphology Study

The morphology of the PANINT/CNOsox nanocomposite and individual nanostructural
components such as pure polyaniline nanotubes and pristine CNOs was characterized using
field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM),
and optical microscopy at light field mode (Figure 5). The TEM image for pristine CNOs randomly
dispersed on a copper mesh is shown in Figure 5A. The TEM image clearly reveals visible CNO
nanoparticles with spherical structures with an average diameter of five nm. The CNO structures
exhibit concentric graphitic layers. The number of graphene walls in one carbon nanoparticle varies
between six and ten. The TEM diffraction patterns also indicate that the distance between individual
spheres equals 0.33 nm, which corresponds to the dimension in pyrolytic graphite [38]. The size of the
CNO and its strain makes them an ideal nanoparticle for further functionalization and incorporation
into larger systems, despite their strong predisposition to aggregation, which is also shown in
Figure 5A. To minimize aggregation, an oxidation reaction was applied, which successfully increases
the hydrophilicity of the carbon nanoparticles and increases their dispersibility in polar solvents.
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Figure 5. (A) TEM image of pristine CNOs. SEM images of a: (B) pure polycarbonate (PC) membrane
surface containing unfilled pores with a diameter of 200 nm, (C) empty PANINT after the removal of
the PC matrix, (D) randomly oriented PANINT on an Au surface, (F,H) vertically oriented brush-like
PANINTs forest on Au film, and (E) optical microscopy images at light field mode for randomly
dispersed and (G) vertically oriented PANINT on an Au surface.

The synthesis of conductive PANI, which was used to form nanotube structures, was accomplished
by the template procedure (Scheme 2). The smooth flat surface of the PC membrane, which was used
as a template, is also shown in Figure 5B. The diameter of the pore sharply defines the diameter of
the polymer nanotubes, which in this case is equal to 200 nm. The density of the pore distribution in
the PC membrane reflects the amount of the PANINT structures formed on the surface. Additionally,
the one µm of PC membrane thickness determines the length of the PANINT structures. Therefore,
the membrane that is used defines the size of the nanotubes in three dimensions. Figure 5C confirmed
that the nanotubes formed during the polymerization process are unfilled and empty inside. The
average diameter of the polymer nanotubes is 200 ± 30 nm, and depends on the side-wall thickness.
The PANINT are not completely straight due to the membrane removal via repeatable steps, but they
do not show cavities, and are free of solvent and melted PC. The PANINT were obtained as a randomly
assembled nanostructure (Figure 5D,E), where chain aggregates are formed that rise vertically to the
surface (Figure 5F–H). The second step for the synthesis required a prior sputtering of a thin gold
layer onto the membrane. The sputtered 100-nm thick gold films completely blocked the pores on
one side, and became a substrate for the growth of PANINT. Figure 5F,G indicates that the polymer
nanotubes extend perpendicularly to the surface, creating a brush-like “nanoforest”. The PANINT

orientation provides a larger active surface area for the conductive polymer, which enables greater
availability, resulting in better efficiency for the further functionalization with CNOsox. There is also a
higher probability of filling the empty core of the nanotubes by carbon nanoparticles, which have a
diameter that is approximately 20 times smaller. An active and highly developed surface area is the
most important parameter for materials that are used as electrodes in supercapacitor devices, which
defines their electrochemical properties. The capacitance of such systems is directly proportional to
the surface of the electrodes that is available for transport of the electrolyte ions.

Figure 6 shows SEM images for PANINTs modified with CNOsox at varying concentrations.
The functionalization of the polymer nanotubes with CNOsox was carried out in the presence of
water-soluble EDC and NHS, as described previously (Scheme 3). Despite the very small size of
the carbon nanoparticles (~5 nm), the SEM images do not exhibit single and separated CNOsox

particles. The van der Waals forces between the oxidized carbon nanoparticles lead to self-aggregation
and the formation of nanoclusters, and their amount and distribution are concentration-dependent
(Figure 6B–D). The aggregates of carbon nanoparticles with different dimensions formed a spongy-like
structure. The CNOox particles were accumulated both between and onto PANINT. The SEM images
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show the difference between pristine PANINT (Figure 6A) and PANINT/CNOox nanocomposites, even
for low concentrations of CNOsox (Figure 6B).Polymers 2018, 10, x FOR PEER REVIEW  12 of 19 
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Figure 6. SEM images of (A) vertically oriented PANINT on an Au surface, pristine PANINT,
and PANINT functionalized with CNOsox: (B) 0.5 mg mL−1, (C) 1 mg mL−1, and (D) 4 mg mL−1.

3.4. Voltammetric Studies of the PANINT/CNOsox Nanocomposite

The PANINT/CNOox nanocomposites and undoped PANINT as GC/Au-PANINT/CNOox and
GC/Au-PANINT were examined using cyclic voltammetry (CV). Nanocomposites anchored to a
thin gold film were immobilized onto the GC electrode surface (Scheme 2). Such a system enables
the evaluation of the electrochemical performance and charge storage ability of these systems. The
measurements were conducted in one M of sulfuric acid solution within the 0–0.8 V potential range
versus Ag/AgCl. The voltammetric curves were recorded using different sweep rates of up to
100 mV s−1. The voltammetric responses for pure PANINT and PANINT/CNOox (four mg mL−1

of CNOs) composites are shown in Figure 7. The PANINT film exhibited good mechanical and
electrochemical stability under cyclic voltammetric conditions within the applied potential range
(Figure 7A). Figure 7A,B present the 10th cycle of the CV measurements, and the shape of the CV
curves remain essentially unchanged. The characteristic CV response for pristine PANINT in acidic
medium consists of two pairs of redox couples (A1/C1 and A2/C2) corresponding to two-electron
processes. The peaks A1/C1 within the 0–0.25 V potential range are attributed to the electrochemical
transition between semiconducting leucoemeraldine and the conductive emeraldine form. The peaks
A2/C2 occurring in a more positive potential range are attributed to the benzoquinone to aminoquinone
transformation [64].
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Figure 7. Cyclic voltammograms for (A) pristine Au–PANINT at one mV s−1 and (B)
Au–PANINT/CNOsox (4 mg mL−1 of CNOsox) nanocomposite immobilized on a GC electrode for
varying sweep rates: 1 mV s−1, 5 mV s−1, 10 mV s−1, 20 mV s−1, 50 mV s−1, and 100 mV s−1 in 1 M
H2SO4. (C) The capacitive current (IC) vs. sweep rate dependence.

The PANINT/CNOsox film exhibited stable and conductive behavior under cyclic voltammetric
conditions within this potential range (Figure 7B). The capacitance current depends on the sweep
rates and the film composition. The conductivity of this composite arises mainly from the CNOsox

component. The electrochemical responses also indicate the presence of a pair of redox peaks,
confirming the contribution of the PANI nanostructures to the capacitance of the composites. The less
clarity of PANINT redox peaks even at low scan rates is caused by the CNOsox presence, which restricts
the electrolyte access to the polymer nanotubes. The PANINT signals decreased with the increasing
sweep rate. The voltammograms for the PANINT/CNOsox measured at sweep rates higher than 50 mV
s−1 show almost pseudo-rectangular anodic and cathodic profiles, which reflects a practically ideal
double-layer capacitance behavior. The capacitive current varies linearly with the sweep rate below
50 mV s−1 at +0.3 V versus Ag/AgCl, as shown in Figure 7C. The deviations from linear dependence
of the capacitive current above 50 mV s−1 are the results of the electrolyte diffusion limitation. The
capacitive current (Ic) is given by Equation 1:

Ic = Cs v m (1)

in which Cs is the specific capacitance, m is the mass deposited onto the electrode surface, and v is the
potential sweep rate. It should be noticed that the mass parameter is directly connected to the active
surface of the material, according to Equation (2):

m = A ρA (2)
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where ρA is the average area density, and A is the active surface area of material. The values for Cs

calculated from the dependence of the current on the different sweep rates for undoped PANI and the
composites are collected in Table 1. The Cs for the undoped PANI and PANINT/CNOsox composite
using CV was also determined from the following Equation (3):

CS =

∫ E1
E2

i(E)dE

vm(E1 − E2)
(3)

where E1 and E2 are the initial and final potentials (V), respectively,
∫ E1

E2
i(E)dE is the integrated current

over the potential window, v is the sweep rate (V s−1), and m is the mass of the active material. The
values of the specific capacitances obtained by the integration of I versus E curves are slightly different
compared to those calculated from the linear relationship for the I versus v plots (Table 1). A larger
difference of the calculated Cs values is observed for low sweep rates (<5 mV s−1). For both cases,
the specific capacitances for the nanocomposite are higher than those obtained for the pristine PANINT.

Table 1. Specific capacitance of pristine PANINT and PANINT/CNOox composites calculated based on
the voltammetric studies.

Specific Capacitance (F g−1)

Pristine PANINT PANINT/CNOsox Composite

Sweep rate (mV s−1) C1 C2 C1 C2

1 237 269 795 946
5 - - 741 681

10 - - 616 614
20 - - 431 441
50 - - 213 200
100 53 70 115 169

C1 is calculated using Equation (1) and C2 using Equation (2).

The capacitance value calculated using Equation (2) at 1 mV s−1 is 946 F g−1, which is much higher
than that for pristine PANINT (269 F g−1) (Table 1). It is possible that this is due to the PANINT/CNOsox

surface area increase while maintaining the electroactive behavior. The dependence of the specific
capacitance versus scan rate shows that the PANINT/CNOsox nanocomposites are capable of storing
more electric charge compared to pristine PANINT, regardless of the sweep rate. It is also important to
note that the specific capacitance for PANINT reveals a more linear behavior compared to that for the
nanocomposites within the same sweep rate range. When the sweep rate was increased to 10 mV s−1,
the capacitive current for the nanocomposite decreased and represented only ca. 65% of the starting
value. However, the shape of the CV curves remain essentially unchanged even at high scan rates,
suggesting that the electrode exhibits excellent charge transport, while the gravimetric capacitance
gradually decreased upon increasing the scan rate.

The data show that the PANINT/CNOox nanocomposites are ideal materials for supercapacitors.
Compared to other systems described in the literature that contain carbon nanoparticles and PANI
(Table 2), our nanocomposites exhibit better electrochemical properties, including a notably higher
specific capacitance. The higher values of specific capacitance for the PANINT/CNOsox nanocomposite
result from the high conductivity of both nanostructures, due to their extremely high porosity and
organized brush-like structures. In particular, “conductive” channels were created in which the
interactions between π-electrons of the PANI aromatic/quinonoid structures and CNO graphitic
layers facilitate charge transport. The high effectiveness of supercapacitor devices containing
PANINT/CNOsox can also be realized due to the specific nanocomposite architecture, in which the
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nanotubes are oriented vertically to the surface, thus providing easy access for the electrolyte and
facilitating ion diffusion.

Table 2. Electrochemical performance of various composites for supercapacitors based on PANI
electroactive material.

Material Sweep Rate
(mV s−1)

Potential
Range (V) Electrolyte Specific Capacitance

(F g−1) References

PANI 10 −0.1–0.8 1 M H2SO4 503 [15].
PANI 10 −0.2–0.6 Nafion 269 [64]

Nanofibrous PANI 10 −0.1–0.8 1 M H2SO4 839 [65]
Nanofibrous PANI 10 −0.1–0.8 1 M H2SO4 861 [66]
Hydrogel-assisted
PANI microfiber 10 −0.2–0.8 1 M methane

sulfonic acid 703 [67]

BF4-doped PANI 50 0–0.75 4 M HBF 74 [68]
PANI/CNT 5 −0.1–0.7 PVA/H3PO4 440 [69]

PANI/MWCNT 1 0–1.0 0.1 M H2SO4 560 [33]
Mesoporous

C/PANI 2 −0.1–1.0 1 M H2SO4 470 [70]

PANI on CNF 5 0–0.8 1 M H2SO4 264 [71]
PANI/GO 1 −0.1–0.9 1 M H2SO4 1136 [72]

G/Fe2O3/PANI 1 −1.0–0.1 1 M KOH 638 [73]
PANINT/CNOsox 1 0–0.8 1 M H2SO4 946 this work
PANINT/CNOsox 10 0–0.8 1 M H2SO4 614 this work

Abbreviations: BF4—tetrafluoroborate, CNF—carbon nanofiber, CNT—carbon nanotube, Fe2O3—ferric oxide,
G—graphene, GO—graphene oxide, MWCNT—multi-walled carbon nanotube, PANI—polyaniline.

Values for the specific capacitance of undoped PANI and composites containing this polymer
and other CNs measured at low sweep rates are collected in Table 2. As observed from the CVs,
the composites exhibited better electrochemical performance compared to most of the undoped
conducting polymers. Additionally, it should be noted that the electrochemical properties of the
composites are affected by the type of carbon nanostructures and the form of the conducting polymer.

4. Conclusions

We demonstrated that nanocomposites containing PANI nanotubes and carbon nano-onions can
be prepared by the template method. The combination of these two types of materials improved the
capacitive properties. Notably, the nanostructural properties of both components and the unique
perpendicular organization of the conducting nanotubes relative to the surface electrode affected
the unusual electrochemical properties of these materials. The electrochemical performance of the
composites is affected by the mass of the carbon nanostructures. The PANINT/CNOox composites
exhibited a high specific capacitance ca. 950 F g−1, which is one of the highest values published to
date for analogous materials. The main advantage of these composites is their potential for use as
conductive materials in solid-state supercapacitors.
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