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Abstract: The synthesis, characterization, and incorporation of open-cage [60]fullerene derivatives as
electron-transporting materials (ETMs) in perovskite solar cells (PSCs) with an inverted planar (p-i-n)
structure is reported. Following optical and electrochemical characterization of the open-cage
fullerenes 2a–c, p-i-n PSCs with a indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene)-
polystyrene sulfonate (PEDOT:PSS)/perovskite/fullerene/Ag structure were prepared. The devices
obtained from 2a–b exhibit competitive power conversion efficiencies (PCEs) and improved
open-circuit voltage (Voc) values (>1.0 V) in comparison to a reference cell based on phenyl-C61-butyric-
acid methyl-ester (PC61BM). These results are rationalized in terms of a) the higher passivation ability
of the open-cage fullerenes with respect to the other fullerenes, and b) a good overlap between the
highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) levels of
2a–b and the conduction band of the perovskite.
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1. Introduction

Perovskite solar cells (PSCs) are an emerging class of photovoltaic devices, which promise to
rival the performance of state-of-the-art cells, with current record power conversion efficiencies (PCEs)
recently reaching 24.2% [1] A major advantage of PSCs is their facile manufacturing process, which
is mostly based on solution processing. However, a number of challenges need to be addressed
before a marketable technology is available, including (a) cell performance, (b) cell stability, and (c)
upscaling beyond laboratory scale toward the industrial production of commercially viable photovoltaic
devices [2–7]. Another desirable yet unmet objective is the replacement of Pb by less toxic metals in
the perovskite structure [8].

A PSC consists of a sandwiched structure containing a transparent conductive oxide, a hole
transport layer (HTL), a perovskite photo-absorber layer, an electron-transport layer (ETL), and a
back-contact electrode [9–15]. Among the various cell configurations available for PSCs, the inverted
planar structure (p-i-n) (Figure 1) is the most attractive in terms of manufacturing, because the ETL, which
is typically a fullerene derivative, is solution-processed [16], as opposed to the metal oxides employed
in the regular planar and mesoscopic configurations, which require high-temperature annealing
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steps [17–19]. Importantly, p-i-n PSCs can be easily integrated in flexible devices [20]. A downside of
the p-i-n configuration is that high open circuit voltage (Voc) values are difficult to achieve. Successful
strategies to overcome this limitation rely on the incorporation of dopant materials [21–23], interfacial
engineering [24–26], morphology control [27,28], or the replacement of the HTL [29,30].
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approach has been implemented with a variety of fullerenes, the vast majority of them consist of 
[3+2], [4+2], or cyclopropane adducts.[15] Thus, the introduction of structurally novel fullerene 
scaffolds that can expand the ETL repertoire is highly desirable.  

Overall, the highest certified PCE value reported for PSCs with p-i-n configurations is 20.9%.[37] 
The development of efficient ETMs that can increase the efficiency of PSCs without the need of 
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derivatives (Scheme 1).[41,42] The promising electrochemical properties and remarkable stability of 
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cells have been thoroughly characterized, and their photovoltaic performance has been studied. We 
demonstrate that open-cage fullerenes exhibit improved performances with respect to PC61BM-based 
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The open-cage derivatives used in this study, 2a–c, were prepared by the photochemical 
oxidation of bis(fulleroids) 1a–c, which can be obtained from [60]fullerene in one step using our Rh(I)-
catalyzed cycloaddition protocol (Scheme 1).[41] Importantly, unlike precursors 1a-c, open-cage 
derivatives 2a–c do not suffer further degradation upon exposure to light and air. In addition to the 
parent open-cage derivative 2a, we selected compounds possessing desirable features for PSC 
manufacturing, such as the improved solubility of 2b or the light-harvesting ability of 2c. With 2a–c 
in hand, we first assessed their optical and electrochemical properties. In solution, 2a–c display 
remarkable absorption maxima in the visible region (λmax = 705–710 nm, Figure S12). The 
electrochemical properties of 2a–c (Figure S13) and PC61BM (3) were determined by cyclic 
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Figure 1. Inverted planar perovskite solar cell (PSC) representation with the structure of indium tin
oxide (ITO)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS)/perovskite/electron-
transport layer (ETL)/silver.

On the other hand, the replacement of phenyl-C61-butyric-acid methyl-ester (PC61BM) by other
fullerenes as the ETL has found limited success, with only a few reports of Voc values beyond the 1.0 V
threshold [31,32]. For the specific case of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate
(PEDOT:PSS)-based devices, examples are even scarcer [11,33,34]. The development of PSCs with
PC61BM surrogates relies mostly on the incorporation of highly crystalline ETLs. The resulting cells
benefit from reduced energy disorder and improved charge trap passivation [35,36]. While this
approach has been implemented with a variety of fullerenes, the vast majority of them consist of [3+2],
[4+2], or cyclopropane adducts [15]. Thus, the introduction of structurally novel fullerene scaffolds
that can expand the ETL repertoire is highly desirable.

Overall, the highest certified PCE value reported for PSCs with p-i-n configurations is 20.9% [37].
The development of efficient ETMs that can increase the efficiency of PSCs without the need of additives
or complex manufacturing techniques is a major challenge in the field of inverted planar PSCs.

Open-cage fullerenes are a family of synthetic derivatives in which the three-dimensional backbone
of the fullerene cage is distorted by the scission of one or more C–C bonds. Open-cage fullerenes have
been successfully used as electron-accepting materials or as additives in bulk-heterojunction solar
cells [38–40]. However, their use as ETLs in PSCs remains unexplored. Some of us recently reported a
straightforward methodology for the synthesis of open-cage fullerene derivatives (Scheme 1) [41,42].
The promising electrochemical properties and remarkable stability of these compounds, together with
the fact that fullerene derivatives are so far the materials of choice as the ETL for p-i-n PSCs, prompted
us to study the use of these compounds for PSCs.

Herein, we report for the first time the incorporation of open-cage fullerenes in p-i-n PSCs.
The cells have been thoroughly characterized, and their photovoltaic performance has been studied.
We demonstrate that open-cage fullerenes exhibit improved performances with respect to PC61BM-based
devices.

2. Results

The open-cage derivatives used in this study, 2a–c, were prepared by the photochemical oxidation
of bis(fulleroids) 1a–c, which can be obtained from [60]fullerene in one step using our Rh(I)-catalyzed
cycloaddition protocol (Scheme 1) [41]. Importantly, unlike precursors 1a-c, open-cage derivatives 2a–c
do not suffer further degradation upon exposure to light and air. In addition to the parent open-cage
derivative 2a, we selected compounds possessing desirable features for PSC manufacturing, such as the
improved solubility of 2b or the light-harvesting ability of 2c. With 2a–c in hand, we first assessed their
optical and electrochemical properties. In solution, 2a–c display remarkable absorption maxima in the
visible region (λmax = 705–710 nm, Figure S12). The electrochemical properties of 2a–c (Figure S13) and
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PC61BM (3) were determined by cyclic voltammetry (CV) in ortho-dichlorobenzene (o-DCB) (see the
Supporting Information).

Compounds 2a–c exhibit three fully reversible cathodic electrochemical behaviors between
−0.8 and −2.3 V at a scan rate of 100 mV s−1. The highest occupied molecular orbital/lowest
unoccupied molecular orbital (HOMO/LUMO) values were estimated from the ultraviolet (UV) and
CV measurements [43].

The optical properties of compounds 2a–c are summarized in Table 1. Overall, the photophysical
and electrochemical properties of the open-cage fullerenes 2a–c are very similar to those of PC61BM,
even though the C60 cage skeleton is significantly altered with respect to the latter. These results
encouraged us to incorporate 2a–c as the electron-transporting materials (ETMs) in PSCs.
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Scheme 1. Synthesis of open-cage fullerene derivatives 2a–c, and (inset) reference compound used in
this study ((3, PC61BM), See Supporting Information for the synthesis of 1c).

Table 1. Optical bandgap, onset reduction, and lowest unoccupied molecular orbital/highest occupied
molecular orbital (LUMO/HOMO) energy levels of the open-cage 2a–c and compound 3.

Comp λmax (nm) Eg (ev) Ered (V) LUMO (ev) HOMO (ev)

2a 709 1.75 0.94 −3.86 −5.61
2b 705 1.76 0.99 −3.81 −5.57
2c 705 1.76 0.85 −3.95 −5.71

PC61BM 718 1.73 0.87 −3.93 −5.66

Figure 2a shows the energy level diagram estimated from the onset potential of the first reductions
and the maximum onset absorption from UV-vis spectra for all the compounds [44]. The electrical
conductivities for PC61BM and compounds 2a–c films were compared by recording current–voltage
(J-V) curves for electron-only devices with a structure of ITO/Al/ETM/Al. All the ETLs showed similar
electron conductivities (4.8, 3.5, 2.8 and 3.7 × 10−4 cm2 V−1

·s−1 for 2a, 2b, 2c, and PC61BM, respectively).
To probe the passivation ability of compounds 2a–c, we studied the photoluminescence (PL) and

time-resolved (TR) PL of the photoactive layer (perovskite) with and without 2a–c, using PC61BM as the
control (Figure 2b and Figure S14). A significant PL quenching effect was observed for the perovskite
layer coated with the open-cage fullerenes 2a, 2b, and PC61BM (Figure 2b). Meanwhile, the PL intensity
of the perovskite increases when using 2c, which is an effect that can be attributed to the lower solubility
of 2c in chlorobenzene (CB) (Figure S15). Compound 2a exhibits a higher passivation ability than
the other fullerenes, resulting in a more pronounced inhibition of the electron–hole recombination
processes [45].
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Figure S14 shows the TR-PL decay measurements, monitoring the emission peak of PC61BM and
2a–c coated perovskite layers as a function of time. The pristine perovskite layer exhibits a PL lifetime
of about 25.6 ns, whereas perovskite/2a, perovskite/2b, perovskite/2c, and perovskite/PC61BM exhibit
PL lifetimes of 3.8 ns, 4.7 ns, 9.2 ns, and 14.1 ns, respectively. Faster decays are measured for the
samples coated with 2a and 2b, indicating that the charge transfer processes are faster than the charge
recombination in the perovskite layer [46].
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Figure 2. (a) Schematic illustration of the estimated HOMO and LUMO energy levels, estimated from
cyclic voltammetry (CV) and UV-vis. (b) Steady-state photoluminescence (PL) spectra of the perovskite
and perovskite/ETM films.

Compounds 2a–c were incorporated in PSCs with an ITO/PEDOT:PSS/perovskite/fullerene/Ag
structure (Figure 1, see Supporting Information for details). The 2a (1.01 V) and 2b (0.97 V)-based devices
showed a significant enhancement of Voc values compared to the PC61BM (0.92 V)-based devices.

On the other hand, the lower solubility of 2c led to low-quality films, resulting in lower photovoltaic
performances for the 2c-based devices (Figure 3). Table 2 summarizes the performances of the PSC
devices incorporating PC61BM and compounds 2a–c. The work functions of the charge transport
materials affect the Voc of PSCs significantly, so the higher Voc values obtained from 2a and 2b-based
devices can be attributed to their higher LUMO values, when compared with PC61BM [25,26,46,47].
Commonly, the Voc values are improved by inserting a work-function interlayer between the perovskite
and the ETL [26].

PSCs based on all the fullerene derivatives showed negligible hysteretic behavior (Figure S16).
Device performance reproducibilities were calculated from the PCE distributions measured for 25
independent cells (Figure 3b). Figure S17 shows the external quantum efficiency (EQE) of the PSCs
based on PC61BM and 2a–c; the devices based on 2a show higher photoresponse around 600 nm and
750 nm. The integrated photocurrent densities based on EQE measurements (Figure S17) are consistent
with those from J-V measurements (Table 2). PC61BM devices exhibited a PCE value of 16.22% with a
Voc value of 0.92 V, a short circuit current (Jsc) value of 21.77 mA·cm−2, and a fill factor (FF) value of
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0.80. In contrast, 2a devices exhibited a PCE value of 16.92% with a Voc value of 1.01 V, a Jsc value of
21.21 mA·cm−2, and a FF value of 0.79. The improved device performance was attributed to the better
passivation ability of compounds 2a and 2b, because of their higher work function, which matches
well with the conduction band of the perovskite [25,26,46,47].

The stabilities of PSCs fabricated with PC61BM, 2a, and 2b were monitored under ca. 25%
humidity in air at room temperature without encapsulation for 10 days. The normalized PCEs against
time are shown in Figure S18. PC61BM-based devices lost 67% of their initial PCE; this was similar
to the PC61BM-based devices 2a and 2b-based devices, which lost 65% and 63% of their initial PCE,
respectively. Meanwhile, the devices based on 2c lost 71% of their initial PCE. Thus, the open-cage
compounds are comparable to PC61BM in terms of cell stability.
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Figure 3. (a) Current–voltage (J-V) curves under 1 sun of illumination (100 mW/cm2) in forward voltage
scans. (b) The power conversion efficiency (PCE) histograms measured for 25 independent cells.

Table 2. Summary of device performance. The calculated short circuit current (Jsc) values were
obtained from the external quantum efficiency (EQE) curves. Values in parentheses represent the
best values measured, a are the average values, and * are the calculated values. PC61BM: phenyl-C61-
butyric-acid methyl-ester.

Compound Jsc* (mA cm−2) Jsc (mA cm−2) Voc (V) FF (%) PCE (%)

2a 21.05 21.17 a (21.21) 0.99 a (1.01) 0.79 16.30 ± 0.62
(16.92)

2b 21.11 20.98 a (21.37) 0.96 a (0.97) 0.79 15.77 ± 0.60
(16.37)

2c 14.87 15.01 a (15.20) 0.53 a (0.60) 0.41 3.07 ± 0.67
(3.74)

PC61BM 21.22 21. 56 a (21.77) 0.88 a (0.92) 0.80 15.66 ± 0.56
(16.22)

3. Conclusions

In conclusion, we have successfully prepared a series of p-i-n type PSCs incorporating dicarbonylic
open-cage [60]fullerene derivatives 2a–c as the ETL. For those compounds with appropriate solubility,
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the resulting PSCs offer performances rivaling or even superior to those of analogous cells employing
the PC61BM reference. These results are commensurate with a good overlap between the HOMO/LUMO
levels of fulleroids 2a–b and the conduction band of the perovskite. The modularity of our synthetic
approach to open-cage fullerene derivatives 2a–c offers a promising opportunity to develop superior
PSCs beyond this preliminary account.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/8/1314/s1,
Figure S-1. 1H NMR (400 MHz, CDCl3) of compound 3a. Figure S-2. 1H NMR (400 MHz, CDCl3) of compound
3b. Figure S-3. 1H NMR (400 MHz, CDCl3) of compound 3c. Figure S-4. 1H NMR (400 MHz, CDCl3) of
compound 1a. Figure S-5. 1H NMR (400 MHz, CDCl3) of compound 1b. Figure S-6. 1H NMR (400 MHz,
o-DCB-d4/CS2) of compound S-5. Figure S-7. 1H NMR (400 MHz, CDCl3) of compound 1c. Figure S-8. 1H NMR
(400 MHz, CDCl3) of compound 2a. Figure S-9. 1H NMR (400 MHz, CDCl3) of compound 2b. Figure S-10.
13C NMR (100 MHz, CDCl3) of compound 2b. Figure S-11. 1H NMR (400 MHz, CDCl3) of compound 2c.
Figure S-12. UV-vis spectra of compounds 2a-c and PC61BM. Figure S-13. Cyclic voltammetry of compounds 2a-c.
Figure S-14. Time-resolved photoluminescence of perovskite, perovskite/compounds 2a-c and perovskite/PC61BM
films. Figure S-15. Fullerene derivatives 2a-c and PC61BM in o-dichlorobezene (20 mg/mL). Figure S-16. J-V curves
of the inverted PSCs based on PC61BM (a) and 2a,b (b and c, respectively) with respect to forward and reverse
scan directions (the scanning rate was 100 mV/s). Figure S-17. EQE measurements for 2a-c and PC61BM-based
devices. Figure S-18. Stability studies of 2a-c and PC61BM-based devices. Figure S-19. Top-view SEM image of
the perovskite film.
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